Acknowledgement
이 논문은 2023년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행한 연구입니다(20226A10100030).
References
- Addison, P. S., 2018, Introduction to redundancy rules: the continuous wavelet transform comes of age, Phillosophical Transasctions of the Royal Society A, 376(2126), 1-5, doi: http://doi.org/10.1098/rsta.2017.0258
- Allen, J., 1977, Short Time Spectral Analysis, Synthesis, and Modification by Discrete Fourier Transform, IEEE Transactions on Acoustics, Speech, and Signal Processing, 25(3), 235-238, doi: https://doi.org/10.1109/TASSP.1977.1162950
- Chakraborty, A., and Okaya, D., 1995, Frequency-time decomposition of seismic data using wavelet-based methods, Geophysics, 60(6), 1906-1916, doi: https://doi.org/10.1190/1.1443922
- Cho, S. I., and Pyun, S. J., 2023, Comparison of CNN and GAN-based Deep Learning Models for Ground Roll Suppression, Geophysics and Geophysical Exploration, 26(2), 37-51, doi: https://doi.org/10.7582/GGE.2023.26.2.037 (In Korean with English abstract)
- Clay, C. S., and Medwin, H., 1977, Acoustical oceanography: Principal & applications, John Wiley & Sons Inc. doi: 10.1016/S0022-460X(78)80104-7
- Deng, L., and Yu, D., 2014, Deep Learning: Methods and Applications, Foundations and Trends in Signal Processing, 7(3-4), 197-387, doi: http://doi.org/10.1561/2000000039
- Duchi, J., Hazna, E., and Singer, Y., 2011, Adaptive Subgradient Methods for Online Learning and Stochastic Optimization, Journal of Machine Learning Research, 12(7), 2121-2159, doi: https://dx.doi.org/10.5555/1953048.2021068
- Dutta, N. C., and Ode, H., 1983, Seismic reflections from a gas-water contact, Geophysics, 48(2), 148-162, doi: https://dx.doi.org/10.1190/1.1441454
- Fang, W., Fu, L., Zhang, M., and Li, Z., 2021, Seismic data interpolation based on U-Net with texture loss, Geophysics, 86(1), V41-V54, doi: https://dx.doi.org/10.1190/geo2019-0615.1
- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., WardeFarley, D., Ozair, S., Courville, A., and Bengio, Y., 2020, Generative adversarial networks, Commun. ACM, 63(11), 139-144, doi: https://doi.org/10.1145/3422622
- Goupillaud, P., Grossmann, A., and Morlet, A., 1984, Cycleoctave and related transforms in seismic signal analysis, Geoexploration, 23(1), 85-102, doi: https://dx.doi.org/10.1016/0016-7142(84)90025-5
- Harsuki, R., and Alkhalifah, T., 2022, StorSeismic: A new paradigm in deep learning for seismic processing, IEEE Transactions on Geoscience and Remote sensing, 60, 1-15, doi: https://doi.org/10.1109/TGRS.2022.3216660
- He, K., Zhang, X., Ren, S., and Sun, J., 2016, Deep residual learning for image recongnition, IEEE Conference on Computer Vision and Pattern Recognition, 770-778, doi: https://doi.org/10.1109/CVPR.2016.90
- He, Q., and Wang, Y., 2021, Reparameterized full-waveform inversion using deep neural networks, Geophysics, 86(1), V1-V13, doi: https://doi.org/10.1190/geo2019-0382.1
- Jia, Y., and Ma, J., 2017, What can machine learning do for seismic data processing? An interpolation application, Geophysics, 82(3), V163-V177, doi: https://dx.doi.org/10.1190/geo2016-0300.1
- Jo, J., and Ha, W., 2023, Deep-Learning Seismic Inversion using Laplace-domain wavefields, Geophysics and Geophysical Exploration, 26(2), 84-93, doi: https://doi.org/10.7582/GGE.2023.26.2.084 (In Korean with English abstract)
- Kaur, H., Pham, N., and Formel, S., 2020, Seismic data interpolation using deep learnging with generative adversarial networks, Geophysical Prospecting, 69(11), 307-326, doi: https://doi.org/10.1111/1365-2478.13055
- Kim, S., and Jun, H., 2022, The Use of Unsupervised Machine Learning for the Attenuation of Seismic Noise, Geophysics and Geophysical Exploration, 25(2), 71-84, doi: https://doi.org/10.7582/GGE.2022.25.2.071
- Krizhevsky, A., Sutskever, I., and Hinton, G. E., 2017, ImageNet classification with deep convolutional neural networks, Communications of the ACM, 60(6), 84-90, doi: https://dx.doi.org/10.1145/3065386
- LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D., 1989, Backpropagation applied to handwritten zip code recognition, Neural Computation, 1(4), 541-551, doi: https://doi.org/10.1162/neco.1989.1.4.541
- LeCun, Y., Bengio, Y., and Hinton, G. E., 2015, Deep learning, Nature, 521, 436-444, doi: https://doi.org/10.1038/nature14539
- Lewis, W., and Vigh, D., 2017, Deep learning prior models from seismic images for full-waveform inversion. In: SEG Technical Program Expanded Abstracts 2017, Society of Exploration Geophysicist, 1512-1517, doi: https://doi.org/10.1190/segam2017-17627643.1
- Li, H., Li, X., Dong, H., Han, F., and Wang, C., 2022, Full-waveform inversion with adversarial losses via deep learning, Journal of Applied Geophysics, 205, 1-11, doi: https://doi.org/10.1016/j.jappgeo.2022.104763
- Li, Y., and Ma, Z., 2021, Deep learning-based noise reduction for seismic data, Journal of Physics: Conference Series, 1861 012011 IWAACE 2021, doi: https://doi.org/10.1088/1742-6596/1861/1/012011
- Liner, C. L., and Bodmann, B. G., 2010, The Wolf ramp: Reflection characteristics of a transition layer, Geophysics, 75(5), A31-A35, doi: https://doi.org/10.1190/1.3476312
- Liner, C., 2012, Elements of Seismic Dispersion: A Somewhat Practical Guide to Frequency-Dependent Phenomena, Society of Exploration Geophysicists, 109-124, doi: https://doi.org/10.1190/1.9781560802952.ch6
- Liu, J., and Marfurt, K. J., 2006, Thin bed thickness prediction using peak instantaneous frequency, SEG/New Orleans annual meeting, 968-972, doi: https://doi.org/10.1190/1.2370418
- Ma, Y., and Luo, Y., 2018, Automatic first-arrival picking with Reinforcement Learning, SEG Global Meeting Abstracts, 493-497, doi: https://doi.org/10.1190/IGC2018-121
- Marfurt, K. J., and Kirlin, R. L., 2001, Narrow-band spectral analysis and thin-bed tuning, Geophysics, 66(4), 1274-1283, doi: https://doi.org/10.1190/1.1487075
- Mosser, L., Dubrule, O., and Blunt, M. J., 2020, Stochastic seismic waveform inversion using generative adversarial networks as a geological prior, Mathematical Geosciences, 52(1), 53-79, doi: https://doi.org/10.1007/s11004-019-09832-6
- Naeini, E. Z., and Prindle, K., 2018, Machine learning and learning from machines, The Leading Edge, 37(12), 886-893. doi: https://doi.org/10.1190/tle37120886.1
- Nithyashree, V., 2021, https://github.com/Nithyashree-2022/VGG-19-for-Rock-Paper-and-Scissors-classification (July 18, 2023 Accessed)
- Oliveira, D. A., Ferreira, R. S., Silva, R., and Brazil, E. V., 2018, Interpolating seismic data with conditional generative adversarial networks. IEEE Geoscience and Remote Sensing Letters, 15(12), 1952-1956, doi: https://doi.org/10.1109/LGRS.2018.2866199
- Ovcharenko, O., Kazei, V., Kalita, M., Peter, D., and Alkhalifah, T., 2019, Deep learning for low-frequency extrapolation from multioffset seismic data, Geophysics, 84(6), R989-R1001, doi: https://doi.org/10.1190/geo2018-0884.1
- Ovcharenko, O., and Hou, S., 2020, Deep learning for seismic data reconstruction: Opportunities and challenges, in Proc. 1st EAGE Digitalization Conference Exhibition, no. 1, 1-5, doi: https://doi.org/10.3997/2214-4609.202032054
- Ozawa, M., 2023, Automated picking of seismic first arrivals using a single-to multidomain self-trained network, Geophysics, 89(1), WA25-WA38, doi: https://doi.org/10.1190/geo2022-0666.1
- Park, J., Choi, J., Seol, S. J., Byun, J., and Kim, Y., 2021, A method for adequate selection of training data sets to reconstruct seismic data using a convolutional U-Net, Geophysics, 86(5), V375-V388, doi: https://doi.org/10.1190/geo2019-0708.1
- Partyka, G. A., Gridley, J., and Lopez, J., 1999, Interpretational applications of spectral decomposition in reservoir characterization, The Leading Edge, 18(3), 353-360, doi: https://doi.org/10.1190/1.1438295
- Plotnitskii, P., Alkhalifah, T., Ovcharenko, O., and Kazei, V., 2019, Seismic model low wavenumber extrapolation by a deep convolutional neural network, ASEG Extended Abstracts, 2nd Australasian Exploration Geoscience, 2019(1-5), doi: https://doi.org/10.1080/22020586.2019.12073206
- Ronneberger, O., Fischer, P., and Brox, T., 2015, U-Net, convolutional net-works for biomedical image segmentation, Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, 234-241, doi: https://doi.org/10.1007/978-3-319-24574-4_28
- Roth, G., and Tarantola, A., 1994, Neural networks and inversion of seismic data, J. Geophys. Res.: Solid Earth, 99(B4), 6753-6768, doi: https://doi.org/10.1029/93JB01563
- Sak, H., Senior, A., and Beaufays, F., 2014, Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition, Proc. Interspeech, 338-342, doi: https://doi.org/10.21437/Interspeech.2014-80
- Sezawa, K., and Kanai, K., 1935, Discontinuity in dispersion curves of Rayleigh-waves, Proceedings of the Imperial Academy, 11, 13-14, https://doi.org/10.2183/pjab1912.11.13
- Simonyan, K., and Zisserman, A., 2015, Very deep convolutional networks for large-scale image recognition, 3rd International Conference on Learning Representations (ICLR 2015), 1-14, doi: https://doi.org/10.48550/arXiv.1409.1556
- Sun, B., and Alkhalifah, T., 2019, ML-descent: An optimization algorithm for full-waveform inversion using machine learning, Geophysics, 85(6), R477-R492, doi: https://doi.org/10.1190/geo2019-0641.1
- Sun, H., Sun, Y., Nammour, R., Rivera, C., Williamson, P., and Demanet, L., 2023, Learning with real data without real labels: a strategy for extrapolated full-waveform inversion with field data, Geophysical Journal International, 235(2), 1761-1777, doi: https://doi.org/10.1093/gji/ggad330
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A., 2015, Going deeper with convolutions, 2015 IEEE Conference on Computer Vision and Pattern Recognition, 1-9, doi: https://doi.org/10.1109/CVPR.2015.7298594
- Tsai, K., Hu, W., Wu, X., Chen, J., and Han, Z., 2019, Automatic First Arrival Picking via Deep Learning with Human Interactive Learning, IEEE Transactions on Geoscience and Remote Sensing, 58(2), 1380-1391, doi: https://ieeexplore.ieee.org/abstract/document/8880673 https://doi.org/10.1109/TGRS.2019.2946118
- Wang, J., Xiao, Z., Liu, C., Zhao, D., and Yao, Z., 2019, Deep Learning for Picking Seismic Arrival Times, J. Geophys. Res. Solid Earth, 124(7), 6612-6624, doi: https://doi.org/10.1029/2019JB017536
- Widess, M. B., 1982, Quantifying resolving power of seismic systems, Geophysics, 47(8), 1160-1173, doi: https://doi.org/10.1190/1.1441379
- Wolf, A., 1937, The reflection of elastic waves from transition layers of variable velocity, Geophysics, 2(4), 357-363, doi: https://doi.org/10.1190/1.1438104
- Yang, F., and Ma, J., 2019, Deep-learning inversion: A next-generation seismic velocity model building method, Geophysics, 84(4), R583-R599, doi: https://doi.org/10.1190/geo2018-0249.1
- Yeeh, Z., Park, J., Seol, S. J., Yoon, D., and Byun, J., 2023, Trace-based Interpolation Using Machine Learning for Irregularly Missing Seismic Data, Geophysics and Geophysical Exploration, 26(2), 62-72, doi: https://doi.org/10.7582/GGE.2023.26.2.062 (In Korean with English abstract)
- Yu, S., Ma, J., and Wang, W., 2019, Deep learning for denoising, Geophysics, 84(6), V333-V350, doi: https://doi.org/10.1190/geo2018-0668.1
- Zeiler, D., and Fergus, R., 2014, Visualizing and understanding convolutional networks, Springer International Publishing, 818-833, https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53
- Zhang, M., Liu, Y., and Chen, Y., 2019, Unsupervised seismic random noise attenuation based on deep convolutional neural network, IEEE Access, 7, 179810-179822, doi: https://doi.org/10.1109/ACCESS.2019.2959238
- Zhong, T., Cheng, M., Dong, X., and Wu, N., 2021, Seismic random noise attenuation by applying multiscale denoising convolutional neural network, IEEE Trans. Geoscience Remote Sens, 60, 1-13, doi: https://doi.org/10.1109/TGRS.2021.3095922