• Title/Summary/Keyword: Energy storage density

Search Result 401, Processing Time 0.03 seconds

Giant Perpendicular Magnetic Anisotropy of a Fe(001) Surface: A Density Functional Study

  • Odkhuu, D.;Rhim, S.H.;Yun, Won Seok;Hong, S.C.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.12a
    • /
    • pp.29-29
    • /
    • 2013
  • We predict agigantic perpendicular magnetocrystalline anisotropy (MCA) in Fe (001) capped by 5d transition metal (TM) overlayers by using first principles calculations. Analysis of atom-by-atom contribution to MCA reveals that gigantic MCA as large as 11 meV/TM originates not from Fe atoms but from the 5d TMs through the strong spin-orbit coupling. More specifically, it is the hybridization between TM and Fe d orbitals that also induces non-negligible magnetic moments in TM. Furthermore, spin-channel decompositions of MCA matrix with and without the presence of Fe substrate identify the electronic origin of the perpendicular MCA that the down-down channel contribution plays the most crucial role for the sign changes of MCA of TM overlayers upon the hybridization with Fe-3d.

  • PDF

An experimental study on heat transfer characteristics in the ice storage system of ice-on-coil type with rectangular finned tube during freezing process (직사각형 휜이 부착된 관외착빙형 빙축열조에서 응고과정시 열전달 특성에 관한 연구)

  • Kwon, H.Y.;Koh, J.Y.;Jeong, B.Y.;Yim, C.S.
    • Solar Energy
    • /
    • v.20 no.4
    • /
    • pp.61-67
    • /
    • 2000
  • The purpose of this study is to improve heat transfer by attaching rectangular fins to tube. Experiments were carried out under the following conditions - Aspect ratio$(W_f/R_f)$ is 0.7, 1.2 and 1.8. Temperature conversion between high and low positions of water in the thermal storage appeared because maximum density point of water is about $4^{\circ}C$ and inlet direction of working fluid influenced conductive heat transfer Compared with the unfinned tube(bare tube), the rectangular tube increased the ice thermal storage energy and the ice thermal storage energy was increased as aspect ratio was increased.

  • PDF

Magnetic Properties and Electronic Structure of $Pt_3Ni$ (001), (110) and (111) Surfaces: Density Functional Study

  • Kumar, Sharma Bharat;Kwon, O-Ryong;Odkhuu, Dorj;Hong, Soon-Cheol
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.06a
    • /
    • pp.129-129
    • /
    • 2011
  • The limited understanding of the surface properties of $Pt_3Ni$ for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cell (PEMFC) has motivated the study of properties and electronic structures of seven layered $Pt_3Ni$ (001), (110), and (111) surfaces. The first principle method based on density functional theory (DFT) is carried out. It is found that the bulk $Pt_3Ni$ has a ferromagnetic ground state with the ordered fcc type L12 structure, which is in good agreement with other results. Non magnetic Pt has the induced magnetic moment due to the strong hybridization between 3d Ni and 5d Pt. The magnetic moment of Pt and Ni enhanced on the surface of each due to surface effect however the magnetic moment of surface Pt in the Pt-segregated Pt3Ni (111) decreased and the magnetic moment of Ni in Ni rich subsurface increased significantly. The calculated d band centers of Pt explain the possibilities for oxygen absorption and play the important roles in altering the catalytic properties. The spin polarized densities of states are presented in order to understand physical properties of Pt in different surfaces in detail.

  • PDF

Lithium Air Battery: Alternate Energy Resource for the Future

  • Zahoor, Awan;Christy, Maria;Hwang, Yun-Ju;Nahm, Kee-Suk
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.14-23
    • /
    • 2012
  • Increasing demand of energy, the depletion of fossil fuel reserves, energy security and the climate change have forced us to look upon alternate energy resources. For today's electric vehicles that run on lithium-ion batteries, one of the biggest downsides is the limited range between recharging. Over the past several years, researchers have been working on lithium-air battery. These batteries could significantly increase the range of electric vehicles due to their high energy density, which could theoretically be equal to the energy density of gasoline. Li-air batteries are potentially viable ultra-high energy density chemical power sources, which could potentially offer specific energies up to 3000 $Whkg^{-1}$ being rechargeable. This paper provides a review on Lithium air battery as alternate energy resource for the future.

A Study to Prevent the Occurrence and Spread of Fire Caused by ESS Storage (ESS 저장창고로 인한 화재의 발생 및 확산방지를 위한 연구)

  • Shin, Joung Hyeon;Jo, Su Yeon;Kim, Geon-Woo;Jung, Ui In;Kim, Bong Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.140-141
    • /
    • 2021
  • ESS refers to a device that can store electrical energy produced by renewable energy generation, etc. and use it when necessary. Lithium-ion batteries are composed of high energy density and combustible electrolyte, so once ignited, it is difficult to extinguish. Many studies have been conducted to solve the problem of the battery itself as the cause of the fire. However, there is also a problem with the structure in which ESS(hereinafter referred to as ESS storage) is installed itself. Therefore, the purpose of this paper is to provide data to solve the problems related to ignition and fire spread due to the problem of ESS storage. In summer, the internal temperature of the ESS storage rises due to solar radiation to trigger a fire, so it is necessary to prevent an internal temperature rise due to solar radiation. Research on standards, materials used, structures, etc. for ESS storage and new regulations are required.

  • PDF

Hybrid Capacitors Using Organic Electrolytes

  • Morimoto, T.;Che, Y.;Tsushima, M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.3
    • /
    • pp.174-177
    • /
    • 2003
  • Electric double-layer capacitors based on charge storage at the interface between a high surface area activated carbon electrode and an electrolyte solution are characterized by their long cycle-life and high power density in comparison with batteries. However, energy density of electric double-layer capacitors obtained at present is about 6 Wh/kg at a power density of 500W/kg which is smaller as compared with that of batteries and limits the wide spread use of the capacitors. Therefore, a new capacitor that shows larger energy density than that of electric double-layer capacitors is proposed. The new capacitor is the hybrid capacitor consisting of activated carbon cathode, carbonaceous anode and an organic electrolyte. Maximum voltage applicable to the cell is over 4.2V that is larger than that of the electric double-layer capacitor. As a result, discharged energy density on the basis of stacked volume of electrode, current collector and separator is more than 18Wh/l at a power density of 500W/l.

Method of Minimizing ESS Capacity for Mitigating the Fluctuation of Wind Power Generation System (풍력발전의 출력 변동 저감을 위한 ESS 최소용량 산정기법)

  • Kim, Jae-Hong;Kang, Myeong-Seok;Kim, Eel-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.119-125
    • /
    • 2011
  • In this paper, we have studied about minimizing the Energy Storage System (ESS) capacity for mitigating the fluctuation of Wind Turbine Generation System (WTGS) by using Electric Double Layer Capacitor (EDLC) and Battery Energy Storage System (BESS). In this case, they have some different characteristics: The EDLC has the ability of generating the output power at high frequency. Thus, it is able to reduce the fluctuation of WTGS in spite of high cost. The BESS, by using Li-Ion battery, takes the advantage of high energy density, however it is limited to use at low frequency response. To verify the effectiveness of the proposed method, simulations are carried out with the actual data of 2MW WTGS in case of worst fluctuation of WTGS is happened. By comparing simulation results, this method shows the excellent performance. Therefore, it is very useful for understanding and minimizing the ESS capacity for mitigating the fluctuation of WTGS.

The Characteristics of Asymmetric Hybrid Supercapacitor Cells and Modules for Power Quality Stabilization (전력품질 안정화용 비대칭 하이브리드 슈퍼커패시터 셀 및 모듈 특성)

  • Lee, Byung-Gwan;Maeng, Ju-Cheul;Lee, Joung-Kyu;Yoon, Jung-Rag
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.617-621
    • /
    • 2016
  • In addition to the energy storage facilities based on high power technologies, Electric double layer capacitors(EDLC) are today's candidate for power quality stabilization. However, its low energy density is often inhibiting factor for application of electric power industry. Hybrid supercapacitor is an promising energy storage device that positioned between conventional EDLC and Li-ion battery. This paper describes the preparation and characteristics of a hybrid supercapacitor and module for power quality stabilization. A cylindrical 3200F hybrid supercapacitor ($60{\times}74.5mm$) was assembled by using the $Li_4Ti_5O_{12}$ electrode as an anode and activated carbon as a cathode. It shows 2.5 times higher energy density than conventional EDLC with the same volume. In order to determine the characteristics of the hybrid supercapacitor Module for uninterruptible power supply (UPS), hybrid supercapacitor cells were connected in series with active balancing circuit. At even the high current density of 14A(10C), Module prepared by 18 cells showed the capacitance of 170F at 30~50V, suggesting the applicability for UPS.

Lithium Transition Metal Phosphate Cathodes for Advanced Lithium Batteries (리튬이온전지에서 새로운 양극재료를 위한 금속인산화물)

  • ;Yet Ming Chiang
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.26-26
    • /
    • 2003
  • Lithium storage electrodes for rechargeable batteries require mixed electronic-ionic conduction at the particle scale in order to deliver desired energy density and power density characteristics at the device level. Recently, lithium transition metal phosphates of olivine and Nasicon structure type have become of great interest as storage cathodes for rechargeable lithium batteries due to their high energy density, low raw materials cost, environmental friendliness, and safety. However, the transport properties of this family of compounds, and especially the electronic conductivity, have not generally been adequate for practical applications. Recent work in the model olivine LiFePO$_4$, showed that control of cation stoichiometry and aliovalent doping results in electronic conductivity exceeding 10$^{-2}$ S/cm, in contrast to ~10$^{-9}$ S/cm for high purity undoped LiFePO$_4$. The increase in conductivity combined with particle size refinement upon doping allows current rates of >6 A/g to be utilized while retaining a majority of the ion storage capacity. These properties are of much practical interest for high power applications such as hybrid electric vehicles. The defect mechanism controlling electronic conductivity, and understanding of the microscopic mechanism of lithiation and delithiation obtained from combined electrochemical and microanalytical techniques, will be discussed

  • PDF

Synthesis and characterization of amorphous NiWO4 nanostructures

  • Nagaraju, Goli;Cha, Sung Min;Yu, Jae Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.392.1-392.1
    • /
    • 2016
  • Nowadays, research interest in developing the wearable devices are growing remarkably. Portable consumer electronic systems are becoming lightweight, flexible and even wearable. In fact, wearable electronics require energy storage device with thin, foldable, stretchable and conformable properties. Accordingly, developing the flexible energy storage devices with desirable abilities has become the main focus of research area. Among various energy storage devices, supercapacitors have been considered as an attractive next generation energy storage device owing to their advantageous properties of high power density, rapid charge-discharge rate, long-cycle life and high safety. The energy being stored in pseudocapacitors is relatively higher compared to the electrochemical double-layer capacitors, which is due to the continuous redox reactions generated in the electrode materials of pseudocapacitors. Generally, transition metal oxides/hydroxide (such as $Co_3O_4$, $Ni(OH)_2$, $NiFe_2O_4$, $MnO_2$, $CoWO_4$, $NiWO_4$, etc.) with controlled nanostructures (NSs) are used as electrode materials to improve energy storage properties in pseudocapacitors. Therefore, different growth methods have been used to synthesize these NSs. Of various growth methods, electrochemical deposition is considered to be a simple and low-cost method to facilely integrate the various NSs on conductive electrodes. Herein, we synthesized amorphous $NiWO_4$ NSs on cost-effective conductive textiles by a facile electrochemical deposition. The as-grown amorphous $NiWO_4$ NSs served as a flexible and efficient electrode for energy storage applications.

  • PDF