• 제목/요약/키워드: Energy storage System

검색결과 2,311건 처리시간 0.032초

에너지 수요처의 사용특성에 따른 태양열 급탕시스템의 효율분석 (Analysis of Efficiency of Solar Hot Water System based on Energy Demand)

  • 전용준;박경순
    • 한국태양에너지학회 논문집
    • /
    • 제37권5호
    • /
    • pp.39-47
    • /
    • 2017
  • In a hot water system using solar energy, solar heat is not simply collected by the heat collecting plate, but by heat exchange between the solar collector (flat or vacuum type) and the hot water storage tank. Therefore, the amount of collected solar energy depends on the hot water usage patterns that determine the temperature of the thermal storage tank. Also, if the temperature of the hot water stored in the storage tank exceeds the dangerous temperature during the summer, the heat must be released for safety. If the temperature of the hot water in the storage tank is low, it is necessary to heat by the auxiliary heat source. In this study, three buildings are defined as hotel, swimming pool, and school facilities. And we calculated the released heat energy, auxiliary heat source, and pure storage heat energy based on different hot water usage patterns and installation angle of the solar collectors.

에너지저장시스템을 이용한 전력계통의 과도안정도 향상 (Transient Stability Enhancement of Power System by Using Energy Storage System)

  • 서규석
    • 한국산학기술학회논문지
    • /
    • 제18권12호
    • /
    • pp.26-31
    • /
    • 2017
  • 전력계통의 과도안정도를 향상시키기 위해 종래에는 무효전력 보상장치를 설치하는 방법을 주로 사용하였다. 전통적인 무효전력 보상장치 중 SVC(Static Var Compensator), 변압기의 탭 변환기는 값이 싸고 기계적 스위칭으로 동작하여 속도가 느리다는 단점이 있고, 전력전자기술을 바탕으로 하는 STATCOM(Static Synchronous Compensator)은 고속으로 동작할 수 있는 장점이 있어 최근에 각광을 받고 있지만 고가의 장치라는 단점이 있다. 또한, 무효전력 보상장치에 기반한 전통적인 방법은 무효전력만을 공급하여 과도안정도를 향상시키기에 대형 전동기의 트립에 의한 급격한 전압붕괴를 막을 수 없다. 반면에 에너지 저장시스템은 무효전력과 유효전력을 동시에 공급할 수 있다. 즉, 선로사고로 인하여 부하에 유효전력의 공급이 감소하는 것을 ESS을 통한 유효전력을 공급함과 동시에 적절한 무효전력의 공급을 통하여 과도안정도를 향상시킬 수 있다. 전력계통의 사고 시 유효전력의 빠른 공급은 과도안정도 향상에 매우 중요한 역할을 한다. 본 논문에서는 대형 전동기 부하와 같은 큰 동적부하를 가지는 전력계통에 대하여 에너지저장시스템을 사용한 과도안정도 향상방법을 제시한다. 또한, 유효전력과 무효전력을 보상하는 방법이 기존의 방법보다 더 효과적으로 과도안정도를 향상시킴을 확인하였다.

과냉각 축냉시스템을 적용한 쇼케이스의 운전 특성에 대한 실험적 연구 (Experimental Study on The Running Characteristics of Showcase Using Cold Storage System)

  • 이동원;김정배
    • 한국태양에너지학회 논문집
    • /
    • 제32권6호
    • /
    • pp.22-28
    • /
    • 2012
  • The purpose of this study was to show how tomaintain high efficiency and to use reasonably when being applied the cold-heat storage systems to the showcase. An experimental study was performed to manufacture the showcase system in a laboratory. Comparing the result at general operation condition with that of the new condition using ice storage system, this study showed the effects of the refrigerant sub-cooling, and with using inverter. Using ice storage system, the ice making process was operated during midnight being not needed the cooling of the showcase through the continuous running of the condenser unit. And then, the refrigerant was sub-cooled using the stored cold-heat after being discharged from the air cooling condenser during the day time. Through the experiments, the load transfer rate for the showcase using inverter and ice storage was estimated about 30.0%. And showed that the total power consumption of the showcase with inverter could be reduced about 37% than that of the showcase without inverter.

Experimental Evaluation on Power Loss of Coreless Double-side Permanent Magnet Synchronous Motor/Generator Applied to Flywheel Energy Storage System

  • Kim, Jeong-Man;Choi, Jang-Young;Lee, Sung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.256-261
    • /
    • 2017
  • This paper deals with the experimental evaluation on power loss of a double-side permanent magnet synchronous motor/generator (DPMSM/G) applied to a flywheel energy storage system (FESS). Power loss is one of the most important problems in the FESS, which supplies the electrical energy from the mechanical rotation energy, because the power loss decreases the efficiency of energy storage and conversion of capability FESS. In this paper, the power losses of coreless DPMSM/G are separated by the mechanical and rotor eddy current losses in each operating mode. Moreover, the rotor eddy current loss is calculated by the 3-D finite element analysis (FEA) method. The analysis result is validated by separating the power loss as electromagnetic loss and mechanical loss by a spin up/down test.

Investigation on Electromagnetic Field Characteristics of Interior Permanent Magnet Synchronous Machine Considering Harmonics of Phase Current due to Influence of Mechanical Energy Storage System

  • Park, Yu-Seop
    • Journal of Magnetics
    • /
    • 제22권1호
    • /
    • pp.78-84
    • /
    • 2017
  • This paper investigates the influence of mechanical energy storage on the interior permanent magnet synchronous machine (IPMSM) when it is operated in the generating mode. An IPMSM with six-poles and nine-slots employing concentrated coil winding type is considered as the analysis model, and a surface-mounted permanent magnet synchronous motor directly connected to a heavy wheel is applied as the mechanical energy storage system by using the moment of inertia. Based on the constructed experimental set-up with manufactured machines and power converters, the generated electrical energy is converted into the mechanical energy, and the electromagnetic filed characteristics of IPMSM are subsequently investigated by applying the measured phase current of IPMSM based on finite element method. Compared to the characteristics in a no-load condition, it is confirmed that the magnetic behavior, radial force, and power loss characteristics are highly influenced by the harmonics of the phase current due to the mechanical energy storage system.

초전도자기베어링을 이용한 플라이휠 에너지 저장장치의 진동특성에 관한 연구 (A Study on Vibration Characteristics of Flywheel Energy Storage System Using Superconducting Magnetic Bearings)

  • 김종수;이수훈
    • 한국정밀공학회지
    • /
    • 제15권2호
    • /
    • pp.170-177
    • /
    • 1998
  • The purpose of superconducting magnetic bearing flywheel energy storage system(SMB-FESS) is to store unused nighttime electricity as kinetic energy and convert it to electricity during daytime. The SMB-FESS is proposed as an efficient energy storage system because there is no mechanical problems, such as friction and wear The flywheel over SMB is rotated at a high speed, 50,000rpm. The major source of energy loss in the SMB-FESS is vibration of flywheel. Therefore, the vibration characteristics of SMB-FESS should be identified. In this study, the axial/radial stiffness and damping coefficient of SMB are measured by a vibration test. Natural frequencies and natural modes of flywheel and magnet are analyzed by a finite element method. The modal analysis of system is performed using the modal parameters of each component and the measured stiffness/damping coefficient. So, natural at frequencies and mode shapes of the joined system can be obtained. According to critical speed analysis, the system has two rigid conical modes in the low speed range. Nevertheless, the system has not been affected by the critical speed in the main operating range.

  • PDF

A Supercapacitor Remaining Energy Control Method for Smoothing a Fluctuating Renewable Energy Power

  • Lee, Wujong;Cha, Hanju
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.146-154
    • /
    • 2015
  • This paper proposes a control method for maintaining the energy level for a supercapacitor energy storage system coupled with a wind generator to stabilize wind power output. Although wind power is green and clean energy source, disadvantage of the renewable energy output power is fluctuation. In order to mitigate the fluctuating output power, supercapacitor energy storage system (SCESS) and wind power simulator is developed. A remaining energy supercapacitor (RESC) control is introduced and analyzed to smooth for short-term fluctuating power and maintain the supercapacitor voltage within the designed operating range in the steady as well as transient state. When the average and fluctuating component of power increases instantaneously, the RESC compensates fluctuating power and the variation of fluctuating power is reduced 100% to 30% at 5kW power. Furthermore, supercapacitor voltage is maintained within the operating voltage range and near 50% of total energy. Feasibility of SCESS with RESC control is verified through simulation and experiment.

An Operations Model for Home Energy Management System Considering an Energy Storage System and Consumer Utility in a Smart Grid

  • Juhyeon Kang;Yongma Moon
    • Asia pacific journal of information systems
    • /
    • 제27권2호
    • /
    • pp.99-125
    • /
    • 2017
  • In this study, we propose an operations model to automate a home energy management system (HEMS) that utilizes an energy storage system (ESS) in consideration of consumer utility. Most previous studies focused on the system for the profits obtained from trading charged energy using large-scale ESS. By contrast, the present study focuses on constructing a home-level energy management system that considers consumer's utility over energy consumption. Depending on personal preference, some residential consumers may prefer consuming additional energy to earn increased profits through price arbitrage and vice versa. However, the current system could not yet reflect on this aspect. Thus, we develop an operations model for HEMS that could automatically control energy consumption while considering the level of consumer's preference and the economic benefits of using an ESS. The results of simulations using a dataset of the Korean market show that an operations policy of charging and discharging can be changed depending on consumer's utility. The impact of this policy is not ignorable. Moreover, the technical specifications of ESS, such as self-discharge rate and round-trip efficiency, can affect the operations policy and automation of HEMS.

울트라 캐패시터 에너지 저장장치를 적용한 함정 전기추진 시스템의 효용성 증대 연구 (A Study on the Improving Effectiveness of Shipboard Electric Propulsion System with Ultra-capacitor Energy Storage Devices)

  • 김소연;설승기
    • 전력전자학회논문지
    • /
    • 제17권2호
    • /
    • pp.114-120
    • /
    • 2012
  • Recently, integrated electric propulsion system has been vigorously adopted into naval vessels. To enhance effectiveness and efficiency of power management in these propulsion systems, this paper investigates necessity of energy storage devices and their operation strategies. By introducing the energy storage devices, engine can operate at higher efficiency point and accordingly costs for fuel and maintenance are significantly reduced. In addition, transient performance can also be improved with support of the devices and it leads to stable operation of shipboard power bus. To validate the proposal of this paper, computer simulation has been conducted with real load data of existing electric propulsion system.

자연형 및 설비형 태양열 온수기의 이용특성에 대한 실험적 연구 (The Experimental Research for the Use Characteristics of the Passive and Active type Domestic Solar Hot Water Systems)

  • 이동원;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제33권5호
    • /
    • pp.82-88
    • /
    • 2013
  • There are the stirring test and drain test in the daily performance test to determine the thermal performance of a domestic solar hot water system. The drain test is a test that measures the discharge heating rate while drain the hot water from the top of the storage tank and supply the city water to the bottom of the tank. From the perspective of the user, this drain test is more effective than the stirring test. In this study, the thermal performance were compared through the drain test for a passive type and an active type domestic solar hot water systems consisting of the same storage tank and collectors. At this point, a passive type was used the horizontal storage tanks, and an active type was used vertical storage tank. In the drain test, when the hot water drained up to the reference hot water temperature, an active type which have vertical storage tank represents excellent daily performance than a passive type which have horizontal storage tank regardless of weather conditions. The reason for this is because the vertical storage tank is advantageous to thermal stratification in the tank. After the drain test, the residual heat for the horizontal storage tank was much more than the vertical storage tank, but in the next day the amount of discharged heat were less than the those of vertical storage tank neither. Thus, the solar water heating system which have horizontal storage tank should be adopted preheating control method rather than separate using control method when connected with auxiliary heat source device.