
Ⅰ. Introduction

An energy storage system (ESS) is recently high-
lighted because of the many benefits and applications 

such as provision of ancillary services, peak-time 
shifting, load balancing, renewable integration, sta-
tionary storage for transmission and distribution 
(T&D) support, and quality enhancement, because 
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it can charge, store and discharge energy. Even 
though most applications are relevant to a utility 
firm or a large scale ESS, we can also think of the 
benefits of a small size ESS from the perspectives 
of residential consumers who own a battery-based 
ESS. Furthermore, in a smart grid which enables 
a residential consumer to buy or sell energy to a 
market over dynamically changing electricity prices, 
the consumer can reduce energy fee by utilizing the 
ESS or sometimes make profits. For example, since 
the energy price during the off-peak time is low 
in a market but the price during the peak time is 
high, a consumer can make money by selling the 
stored energy at the higher price which was purchased 
at the lower price. This price arbitrage could be anoth-
er source of profits to residential consumers, if they 
have enough capacity. Thus, some literature such 
as Bradbury et al. (2014) and Walawalkar et al. (2007) 
developed price arbitrage optimization models to 
maximize the economic value of the ESS, but they 
do not focus on the small size ESS but a large scale 
ESS such as Flywheels and pumped hydro. 

However, in this paper we would like to discuss 
an operations model for a small size residential ESS 
which has some different characteristics from a large 
scale ESS. In a smart grid, the residential consumer 
began to be able to have a power to control energy 
consumption depending on the using the energy con-
trol panel called In-home display (IHD) as accom-
panied with advanced metering infrastructure (AMI), 
service of the internet of things (IoT), and an energy 
management system (EMS). Additionally, these tech-
nologies enable a residential consumer to sell or buy 
energy in a smart grid, when the electricity price 
changes dynamically over time (Hargreaves et al., 
2010). The technologies also can be interoperable 
with an ESS. Therefore, throughout the IHD, a resi-
dential consumer can control to charge and discharge 

energy and sometimes can sell the unconsumed en-
ergy in a market. However, the most operations are 
separately implemented and need to be done man-
ually as monitoring the IHD as described in 
Krishnamurti et al. (2013), which implies that the 
operations policy is not optimal. However, the devices 
still have the potential to support personalized in-
formation to change consumer behavior and max-
imize the utility (Krishnamurti et al., (2013)). Also, 
the operations policy could be affected by the personal 
preference for the utility of energy consumption. 
Thus, it gets more important to develop a model 
to reflect on the consumer’s utility and automatically 
provide optimal operations policy in the home energy 
management system (HEMS). 

However, most operations models are derived only 
based on economic value, but not on the consumer’s 
satisfaction. Of course, while firms or commercial 
agents may think highly of the cost-savings, residential 
consumers could be different. Some consumers might 
be interested in saving money by using the ESS, but 
others might want to consume more energy for their 
satisfaction. For instance in which electricity price 
changes, during summer or winter season, a consumer 
may want to turn on air conditioning system for 
a longer time by consuming the energy stored at 
a lower price, rather than to make profits by selling 
the stored energy. This person has higher preference 
for the utility of energy consumption than for the 
energy fee that the consumer has to pay. Also, this 
is a matter of personal preference. According to a 
report of Department of Energy (2017) in U.S., new 
patterns of consumer behavior and asset ownership 
such as advanced metering infrastructure (AMI) with 
a smart grid are creating new business model and 
changing information system structure, regulation 
and so on. Also, in order to maximize the full benefit 
of consumer assets, they emphasize the need for new 
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designs for integrating information system network 
with the smart power grid. Moreover, electric utilities 
began to consider more different types of residents 
which are emerging with a smart grid and new devices. 
Kwon et al. (2010) showed that the change of consum-
er behavior for each different pricing scheme leads 
to different level of energy consumption. For example, 
real time pricing scheme reduces the consumption 
most. As an information system literature, 
Krishnamurti et al. (2013) studied what types of in-
formation the In-Home Display (IHD) needs to be 
provided in order to efficiently maximize the consum-
er’s utility. Also, Moon (2014) showed that, when 
an electricity price changes over time, consumer’s 
behavior could affect consumption pattern in a system 
level and make consumption increased on peak-time. 
Thus, in this paper we would like to discuss the 
personal preference in our proposed model. 

Thus, this paper proposes an operations model 
for a home energy management system (HEMS) for 
a battery-based ESS considering the consumer’s 
utility. This research differs from the existing liter-
ature in that we consider consumers’ utility of con-
sumption as well as an economic aspect. Moreover, 
we believe that our proposed model can help consum-
er automatically make a decision for ESS operations 
depending on their level of energy consumption 
utility. The proposed model is suggested in a form 
of a multi-objective optimization model to maximize 
consumer’s utility and profits as utilizing an ESS. 
Our simulation results show that an operations policy 
of discharging and charging can be changed depend-
ing on consumer’s utility and the impact is not 
ignorable. Also, it is shown that the technical specifi-
cations of an ESS such as a self-discharging rate 
and round-trip efficiency can affect the operations 
policy and automation of a HEMS is very important. 
These imply that a residents should consider the 

technical specification as purchasing the an ESS and 
that, since the information system service provider 
cannot personally support all different consumers 
with different level of utility on energy consumption 
and different specifications of the devices, it needs 
to develop an automated system. To gain the goal, 
we provide the operations models which can be em-
bedded in the HEMS. 

The structure of this paper is as follows. In 
Literature Review, we investigate the literature re-
garding ESS operations models. Then, we suggest 
an optimization model for ESS operations in Section 
III. Based on the proposed model, simulations are 
executed to analyze the impacts of a consumer’s utility 
in Section IV. Also, we examine the impacts of techni-
cal specifications such as round-trip efficiency and 
a self-discharging rate on system performance. Then, 
Section V provides how our suggested model can 
be embedded in a decision support system and how 
it works. Finally, in Section VI we summarizes the 
major results, and provides the direction of further 
studies.

Ⅱ. Literature Review

In the recent SANDIA report (Akhil et al., 2013), 
they defined major ESS applications as follows: bulk 
energy services, ancillary services, transmission infra-
structure services, distribution infrastructure serv-
ices, and consumer energy management services. 
From the end-user point of view, the main objective 
may be to reduce the average level of primary energy 
consumption in order to save money. Through the 
data communications that are shared among other 
technologies or machines such as an ESS, an AMI 
and an IHD, the energy consumption could be con-
trolled optimally. Also, an energy management sys-
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tem can help to operate, optimize and visualize energy 
consumption, energy load, and storage (National 
Institute of Standards and Technology, 2011). For 
the implementation, the energy management system 
needs a model and its algorithm to reflect the oper-
ations strategy. For example, how much energy needs 
to be stored at a low price during off-peak times 
and how much energy needs to be consumed and 
sold during the peak times could be a decision-making 
issue to a system planner, which is called arbitrage 
(Chen et al., 2009). 

There are several studies regarding the price arbi-
trage using a large scale ESS. For example, what 
may be the most cost-effective way to improve the 
economic value of the ESSs for the price arbitrage 
has been studied (Bradbury et al., 2014). The research 
was conducted with the dataset of 2008 locational 
marginal prices (LMPs) from major nodes in seven 
U.S. wholesale energy markets (real-time markets). 
For finding cost-effective way of economics of ESSs, 
it compared 14 ESSs with technical functions that 
energy and power capacity, round-trip efficiency, and 
a self-discharging rate at one hour interval. In addi-
tion, it considered financial factors which lifetime 
of the storage devices, capital costs of the ESS, and 
operation costs. Similarly, a study of New York energy 
market arbitrage has been done. They changed energy 
delivery times three ways for finding optimal dis-
charging time such 2, 4 and 10 hours (Walawalkar 
et al., 2007). Then they found that a charging policy 
can be far more important depending on the different 
technical specifications of an ESS than are generally 
recognized. Sioshansi et al. (2009) studied sensitivities 
of the important factors such as price arbitrage, power 
capacity, energy capacity, and round-trip efficiency. 
Also, this research showed how social welfare gains 
change from the perspectives of consumer and 
generator. At a large-scale level of ESS operations, 

Wade et al. (2010) evaluated the economic value 
for 11kV distribution network and showed that the 
benefits could be influenced by operating strategy. 
Rahimiyan et al. (2014) develop an optimization oper-
ations model for a cluster size of an ESS which can 
be interconnected to an EMS. Moreover, Carpinelli 
et al. (2014) considered a mix of cost minimization 
and the regret felt by the ESS sizing engineer in 
industrial applications. The results show that the deci-
sion maker’s behavior can affect the effectiveness. 
Also, Sioshansi (2010) discussed consumers as well 
as profits made from a large scale energy storage 
from the social welfare perspective. The study dis-
cussed that the large utility-scale storage could affect 
price volatility due to an arbitrage and could make 
energy market price level off. The study showed the 
impact of a large-scale energy storage on energy mar-
ket and social welfare. They mentioned that if ESSs 
in the energy market are introduced on a large scale, 
the volatility of market price would be diminishing. 
The ESS will discharge energy during on-peak time 
which will lead to decrease of price because demand 
will become lower than the case without the storage 
system and vice versa. This also implies that the 
price gap between off-peak and on-peak becomes 
smaller. Therefore, he claimed that the equilibrium 
can bring social welfare to all participants. In this 
regard, it shows the importance of pursuing social 
welfares and social optimum among social players; 
merchant storage operators, consumers, and gen-
erators and so on. Also, this research mentioned 
that many players have different utilities. Thus, if 
some players pursue their own profits not considering 
other player’s profit, social welfare could be decreased 
in that they broke the equilibrium of welfare. 

However, a small size residential ESS has different 
characteristics from a large scale ESS. Information 
system for a large scale of an ESS to automate oper-
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ations can be customized on its purpose and invested 
because the size of investment is sufficiently large. 
On the other hand, it is difficult to customize in 
person because different people has different prefer-
ences on the energy devices and their consumption, 
even though it is definitely required as mentioned 
in Department of Energy (2017). Advances in tech-
nology regarding the smart grid allow data communi-
cations among infrastructures like an AMI, an EMS, 
an IHD, and an ESS which are connected to home 
appliances, and so give a consumer authority to con-
trol those in a remote place as well. Thus, the consum-
er begins to want to control those appliances remotely 
and automatically, depending on their energy utility. 
However, in order to satisfy the consumer’s needs 
and utility as well as to find an effective way to 
control the related devices, what kinds of information 
would be provided or how the devices would be 
controlled is unclear and has been studied. Fisher 
(2008) summarized characteristics for a not-dumb 
meter to be smart. For example, it has to provide 
multiple options for the user to choose from each 
elements and has to react immediately on demand. 
Similarly, Darby (2010) and Sæle and Grande (2011) 
expounded specific aspects, for example load manage-
ment of appliances, which may affect and be affected 
by consumer behavior on the computerized IHD. 
Also, Krishnmurti et al. (2013) has shown that a 
simpler and more generalized format of information 
could be more effective than a personalized IHD. 
This implies that the personalization is necessary 
but the implementation needs to be simple or auto-
mated as much as possible. Likewise, previous studies 
for a HEMS focuses on the controllability to satisfy 
the need of different consumer and information feed-
back to different consumer’s behavior, which is the 
difference between a large scale and a residential 
ESS. 

However, the previous optimal price arbitrage re-
searches fail to consider such different consumer’s 
utility especially in a residential ESS application. 
Operations strategy about energy consumption and 
price arbitrage might be changed by consumer 
utility. The industrial and commercial consumers 
pay more attention to reducing energy costs. 
However, it might not apply to residential consumers 
as aforementioned. Some consumers may want to 
use more energy for their satisfaction, for example, 
keep air conditioner running for a longer time. In 
other words, depending on the consumer’s utility, 
the pattern of energy consumption may be different. 
Moreover, because an ESS can store energy during 
off-peak time, a consumer can use the stored energy 
for their utility instead of selling the energy to a 
market during peak time in order to make profits. 
Also, it can bring higher utility to a consumer be-
cause the consumer can use more energy at a cheaper 
price. For this similar issue, there are few previous 
researches. For example, Conejo et al. (2010) devel-
oped an optimization model that bidirectional com-
munication can happen in HEMS, in which they 
considered a utility function for a consumer as a 
linear function. Similarly, Ferreira et al. (2011) and 
Ferreira et al. (2012) applied a piecewise linear utility 
function to represent the pheonomenon that con-
sumer utility increases when the energy con-
sumption increases. However, they does not consider 
an ESS in an HEMS. 

Given the above context, the contribution of this 
paper is to provide a multi-objective optimization 
based algorithm run by the HEMS considering a 
small-size residential ESS. Also, in the application 
of the residential ESS, the model reflects the consum-
er’s utility which have not been paid attention to 
in the existing literature. From the multi-objective 
optimization perspective, our proposed model re-
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gards a consumer as both a profit-maximizer and 
a utility maximizer. Therefore, the ESS operations 
model from the consumers’ perspectives can be em-
bedded in home energy management system for con-
sumer’s self-automatic control.

Ⅲ. A Model for ESS Operations in 
Home Energy Management System

3.1. A Proposed Model for ESS

The objective of a previous price arbitrage opti-
mization model is to maximize revenue as the ESS 
charges when the price is low and discharges to sell 
when it is high. However, the most existing models 
such as Walawalkar et al. (2007) fail to consider 
how much energy a consumer will use depending 
the consumer’s utility. Thus, in this section, we pro-
pose a model for ESS operations including the con-
sumer’s utility in HEMS in a similar way to Conejo 
et al. (2010), Ferreira et al. (2012) and Rahimiyan 
et al. (2014). Therefore, we will develop a model 
based on the existing model, while incorporating 
the ESS aspects for a price arbitrage and utility at 
the same time. Before introducing our optimization 
model, we address assumptions as follows. 

1. There are no upfront costs. For example, a 
purchasing cost of ESS and an installation cost 
could be charged to a consumer, but in this 
paper we regard them as a fixed cost and so 
do not consider. However, we consider energy 
fee as a variable cost that a consumer should 
pay for consuming and charging energy.

2. There are no transaction costs. We assume that 
the transactions fee to buy and sell is not charged 
and automatically supported by system.

3. Operations of ESS do not affect energy market 

prices. It is assumed that the transactions by 
residential consumers are too small to change 
volatility of electricity market prices. 

4. Technically, consumers are able to buy energy 
from a smart grid or sell to a smart grid. 

Also, we depict how ESS can be operated and 
how energy can be consumed in <Figure 1>. There 
are three core entities: smart grid, consumer, and 
ESS. The relationship is similar to previous 
researches. At a given time t, a consumer can charge 
the amount of energy, , or discharge the amount 

 at a market price . In case of necessity, 
the consumer can use the amount of energy  
which is stored in ESS. Also, there are energy losses 
during charging and storing. A consumer use energy 
directly from the smart grid and stored energy from 
the ESS.

More specifically, as shown in <Figure 1>, three 
different types of energy transactions occurs in the 
system: general transaction between a smart grid and 
a consumer, an internal transaction between a con-
sumer and a storage and an external transaction be-
tween a grid and a storage. First, between a smart 
grid and consumer, a consumer buy the amount 
of energy c(t) at a market price . The second 
one is an internal transaction between a consumer 
and ESS. A consumer could use the amount of energy 

 from ESS. Herein, an important thing is that 
a consumer can choose an energy source between 
a grid and ESS by comparing energy fees that the 
consumer has to pay. The last is an essential arbitrage 
transaction between a smart grid and ESS. ESS charges 
the amount of energy,  at a low price and a 
consumer can sell the unconsumed surplus energy 

 to a smart grid when the price is high. Besides, 
when the storage charges or discharges, there is energy 
loss with round-trip efficiency . Also, there is a 
loss in stored energy  due to chemical reactions 
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at the rate of as time passes.
A consumer wants to minimize energy fees and 

maximize their utility  from reasonable energy 
consumption, which implies that objective of a con-
sumer is required to take both into account. 
Therefore, the multi-objective problem can be ex-
pressed as below. At time t, a consumer can sell 
energy to a market by the amount of discharge, , 
or should pay energy for charging  and/or con-
sumption  at a price of . In other words, 
a consumer makes profits of  but pays 

. The time horizon is one year, which 
is 8,760 hours. 

(1)

(2)

Herein,  means the consumer’ 
utility obtained from energy consumption. Similar 
settings for the utility function can be found in the 
literature such as Conejo et al. (2010), Ferreira et 
al. (2012) and Rahimiyan et al. (2014). Even though 

the forms of a function could be different a little, 
the basic ideas that a utility increases when con-
sumption increases is the same. Therefore, we use 
a log function as a continuous function to express 
that the marginal utility usually decreases as con-
sumption increases. And the coefficient of the log 
function (α) is determined by consumer preference 
regarding consumption, which implies that a con-
sumer who has high coefficient (α) prefers high level 
of consumption. Also, the source of energy con-
sumption is both from a smart grid and from ESS 
and the consumer’s utility arises from the both, 

. 

3.2. Descriptions of Parameters and 
Constraints

This section describes parameters and constraints 
which are subject to the objective function. These 
constraints consist of two parts; ESS and consumers. 
Constraints (3) to (6) are conditions about ESS, and 
the constraint (7) are related to consumers’ 
characteristics.

<Figure 1> The Conceptual Model of ESS Operation with Considering Consumer’ Utility
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(3)

(4)

(5)

Let us define I(t) as an inventory level of ESS 
at time t and Imax as a maximum energy storage 
capacity, which are described in the constraint (3). 
Also, from the ESS perspective, incoming energy 
or outgoing energy should be limited to the power 
capacity, Qmax which is the maximum capacity to 
charge and discharge energy in a unit time. 
Constraints (4) implies the limit of discharging in 
terms of two parts; discharging for arbitrage from 
a storage to grid ( ) and discharging for consum-
er’s self-consumption from the storage ( ). And 
constraint (5) means the limit of charging from grid 
to storage.

(6)

Constraint (6) depicts the ESS inventory level de-
pending on the characteristics of mechanical specifi-
cations and operations. We need to note that the 
parameter  means a self-discharging rate of ESS 

inventory which is related to the loss of energy due 
to parasitic loss in an ESS as time goes on, where 
these losses may be due to mechanical friction, chem-
ical reaction, and etc.(Bradbury et al., 2014). And 
the parameter η means roundtrip-efficiency that is 
caused when we charge and discharge energy to 
storage. Under a perfect condition that there is no 
loss of ESS, the self-discharging rate is 0% and 
round-trip efficiency is 100%. In our operations mod-
el, these factors are exogenously given. In addition, 
the inventory status depending on charging or dis-
charging condition is shown in <Figure 2>. Let us 
assume that ESS currently has energy inventory I(t). 
Then, when the system charges the amount of , 
the energy  will be stored because of round-trip 
efficiency. Also, under a discharging condition, the 
storage system discharges energy  to a 
grid and a consumer. Furthermore, due to a self-dis-
charging rate, the current inventory level will be de-
creased to the level of . Accordingly, the 
inventory level at time t will be expressed as the 
constraint (6).

(7)

<Figure 2> The Inventory Status of ESS 
Change of Inventory Under Charging Condition (Left)

Change of Inventory Under Discharging Condition (Right)
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Constraint (7) means the consumers’ energy 
consumption. Commonly, different types of consum-
er have different energy consumption patterns. For 
considering consumer’s energy utility, we represent 
energy consumption as , which implies 
that the consumer can use energy from a grid and/or 
storage. Also, the consumption has the minimum 
and maximum limits, and .

Ⅳ. Analysis and Comparison Study

In this chapter, we analyze changes of consumers’ 
value, as specifications of ESS and characteristics of 
consumer utility are changed. Then, we will inves-

tigate how consumer’ utility may affect to ESS 
performance.

4.1. Data Description

Before experiments, we analyze the volatility of 
energy price. The volatility is an important factor 
in the aspect of price arbitrage. For the arbitrage, 
a consumer may want to purchase and sell energy 
in order to make profits from a price difference. 
In order to analyze, we used the data of system mar-
ginal price (SMP) to identify price volatility. We 
collected the data from KEPCO (Korea Electric Power 
Corporation) from January to December in the year 
of 2012. Following figure and table describe the basic 

<Figure 3> Basic Statistics of System Marginal Price (SMP) of 2012

<Table 1> Detailed Statistics of System Marginal Price (SMP) of 2012

Month 1 2 3 4 5 6 7 8 9 10 11 12
Average 144.45 157.16 174.26 155.17 168.21 174.30 181.22 157.02 130.31 146.41 136.59 161.93

Min 50.33 126.22 129.77 123.40 137.04 65.07 54.00 52.14 47.54 44.80 110.87 119.99
Max 185.35 281.76 262.23 240.15 262.98 229.42 238.61 244.75 167.07 239.54 184.28 276.42

Standard deviation 23.45 32.74 33.78 25.40 27.27 28.46 27.27 29.70 27.99 30.69 20.12 36.82
Total Average = 157.34, Min = 44.80, Max = 281.76, STD = 32.66,    *KRW
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statistics of the energy price. Standard deviation varies 
from 20.12 to 36.82 and we can see the volatility 
of price is quite high. 

Moreover, in order to reflect the pattern of con-
sumer demand on our experiments, we applied ag-
gregated consumption data from KPX (Korea Power 
Exchange) database and standardized the dataset. 
Using nation-level consumption information, we 
standardized and derived demand information. The 
standardized demand was set to be 500Wh on average, 
because average energy consumption in Korea is ap-
proximately 500Wh per hour. We need to note that 
the demand pattern is similar to price pattern in 
that it has seasonal effects in summer and winter 
but it is not perfectly correlated to energy price. 
This is why different power generations have different 

variable costs and there is preventive maintenance 
in practice. Monthly specific data are given in the 
following table and figure.

The demand side information is important to 
determine ESS operations as charging and/or 
discharging. It had been pointed by other researches 
about demand-side management in a smart grid 
(Farinaccio and Zmeureanu 1999; Firth et al., 2008; 
Gellings and Smith 1989). These studies emphasized 
on different energy consumption patterns and 
showed importance due to technology of a smart 
grid in a real time pricing market. Thus, practical 
ESS operations need to consider both side of supply 
and demand and these datasets are used for our 
model experiments. 

<Figure 4> Basic Statistics of Energy Consumption Demand

<Table 2> Detailed Statistics of Energy Consumption Demand

Month 1 2 3 4 5 6 7 8 9 10 11 12
Average 530.3 545.2 506.7 468.6 458.6 480.6 504.4 513.8 468.4 459.8 508.9 556.7

Min 366.7 442.0 416.4 380.5 367.5 374.6 384.2 404.1 317.9 326.9 412.9 440.3
Max 634.8 641.8 599.8 559.5 528.2 583.5 630.6 647.3 585.5 534.0 597.9 661.2

Standard deviation 60.6 47.0 43.1 40.3 43.0 53.5 64.0 60.1 56.0 47.0 44.1 50.4
Total Average = 500, Min = 317.9, Max = 661.2, STD = 60.4    *W
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4.2. Effects of ESS Operations without 
Consumer Utility

Even if we do not consider consumer’s utility func-
tion, an ESS must enable energy cost saving. Thus, 
we compare how much it can reduce energy cost 
for a reference. For our conduct experiments, we 
applied two scenarios and parameters of consumer 
utility and ESS mechanical specifications like the 
following table. These similar scenarios for the stor-
age capacity which represents the storing time can 
be found in previous researches (Denholm and 
Kulcinski, 2004; Roza Jr, 1993; Sioshansi et al., 2009). 
Also, Lawrence Berkeley National Laboratory consid-
ered the power capacity size of a residential system 
mainly as 2kW to 20kW (Barbose et al. (2015) and 
Galen and Naïm (2016)), which might be boundaries 
of sizes for residential systems. Thus, to display differ-
ence depending on the size of ESS, we analyzed two 
scenarios: 2kW/8kWh and 20kW/80kWh. 

We suppose that coefficient of consumer utility 
(α) is zero in order to see the performance difference 
between scenarios with and without ESS. Note that, 

when the consumer utility is zero, consumption does 
occurs not from the storage system but from the 
grid. Evaluation of the performance given is <Table 
4>. The result shows that ESS could be effective 
on cost savings. When power and energy storage 
capacity is higher, the amount of cost savings also 
increases. Comparing scenario 4.2-A and 4.2-B, per-
formance of Scenario 4.2-B is 10 times higher than 
that of Scenario 4.2-A.

Then, we analyze cumulative energy cost savings 
between with and without ESS. <Figure 5> shows 
how much a consumer needs to cumulatively pay 
for two cases throughout 8760 hours from January 
to December. The solid line shows cumulative energy 
fee that a consumer should pay without operating 
ESS and the dotted line above a shaded region repre-
sents a cumulative energy fee as ESS is operated. 
In early hours, there is slight difference between two 
lines, but the difference becomes clearer after 5000 
hours, which implies that ESS is more beneficial to 
a consumer. The reason is that since the period is 
a summer season, energy prices become higher and 
more volatile and so profits from price arbitrage 

<Table 3> The Basic Status for Analyzing Effects of ESS Operation

Parameters Scenario 4.2-A Scenario 4.2-B
Round-trip efficiency ( ) 80% 80%
Self-discharging rate ( ) 10% 10%

Power capacity (Qmax) 2kW 20kW
Storage capacity (Imax) 8kWh (4 hour) 80kWh (4 hour)
Consumer utility (α ) 0 0

<Table 4> The Analysis Result of ESS Operational Effectiveness

Energy fee (KRW) Scenario 4.2-A (2kW/8kWh) Scenario 4.2-B (20kW/80kWh)
Operation with ESS 345,095,610 304,632,714

Operation without ESS 349,591,487 349,591,487
Cost savings (-4,495,877) (-44,958,773)

Saving cost Percentage -1.286% -12.86%
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increases. As shown in <Figure 6>, ESS charges when 
energy prices are low and discharges when prices 
are high. However, energy prices, SMPs on 24th day 
(from 553 to 576 hour) in the left graph are relatively 
lower and less volatile than energy prices on 204th 
day (from 4873 to 4896 hour) in the right graph. 
Likewise, during the summer, a consumer can make 
more profits than the other seasons. Therefore, cumu-
lative profits from the storage system after 5000 hours 
become larger and so difference between non-ESS 
operations and ESS operations becomes clearer as 
in <Figure 5>. 

4.3. Effects of ESS Operations with 
Consumer Utility

In this section, we consider consumer utility to 
ESS operations. For the case without considering 
consumer utility, energy storage system discharges 
only to a grid. However, in consideration of consumer 
utility, the utility affects storage discharging policies 
in two ways of external discharge and internal 
discharge. External discharge is an arbitrage trans-
action between grid and ESS, which is similar to 
the arbitrage in the existing models. However, in-
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<Figure 5> Cumulative Hourly Energy Cost Savings for Non-ESS and ESS Operations

<Figure 6> Operations Schedule for ESS 
Charging Schedule, Discharging Schedule and Energy Price for 24 hours on 24th day (Left)

Charging Schedule, Discharging Schedule and Energy Price for 24 hours on 204th day (Right)
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ternal discharging policy is determined by energy 
flow between ESS and consumer. Suppose a consumer 
who has high utility on energy consumption. The 
consumer may feel more satisfaction from increased 
consumption of energy. Also, the consumer can re-
trieve necessary energy from a grid and/or storage 
and sometimes charge remaining energy to make 
profits by price arbitrage. However, a consumer who 
has lower utility on consumption compared to cost 
saving would prefer selling energy to a market. 
Therefore, preference for the consumption will affect 
ESS operations policies, more specifically charging 
and discharging rules. To identify this utility effect, 
we change the coefficient of consumer's utility func-
tion (α). The scenarios of these analyses are given 
in <Table 5>, where Scenario 4.3-A and Scenario 

4.3-B means by the cases of a small size storage 
and a large size storage respectively. Also, we repeated 
this experiment for two scenarios.

The results for the scenario 4.3-A are shown in 
<Figure 7>. For different levels of consumption utility 
(α), we identify the impacts on the change of energy 
fee that a consumer has to pay and the change of 
consumption, where the energy fee is calculated by 
the equation, . The increase 
of coefficient of consumer utility leads to increasing 
consumption of energy. But, marginal increments 
of energy fee and consumption are significantly in-
creasing as utility coefficient increases for a certain 
interval. For example, as the coefficient is larger than 
10,000, fees and consumption increase drastically. 
The increment of Y-value, when X-value changes 

<Table 5> The Scenarios for Analyzing Effects of Consumer’s Utility

Fixed Parameter Scenario 4.3-A Scenario 4.3-B
Round-trip efficiency ( ) 80% 80%
Self-discharging rate ( ) 10% 10%

Power capacity (Qmax) 2kW 20kW
Storage capacity (Imax) 8kWh (4 hour) 80kWh (4 hour)

Range of coefficient (α ) 0 to 25000
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from 10,000 to 20,000, is much larger than the incre-
ment as X-value changes from 0 to 10,000. This 
implies that a consumer who originally has lower 
preference to consumption can gain much higher 
utility by paying a little bit more. Moreover, the 
right graph in <Figure 7> shows the change of con-
sumption, where a dotted line means the amount 
of energy retrieved directly from a grid and a solid 
line means the total consumption that is a sum of 
consumptions from a grid and a storage. The total 
energy consumption, a solid line, increases as utility 
for consumption increases. However, the dotted line 
decreases for an interval between 0 and 5000 on 
the X-axis and then increases. In other words, the 
consumption of energy from a storage increases for 
this interval. This result shows that a consumer uses 
stored energy which was bought at a cheaper price 
in advance, rather than more expensive energy di-
rectly retrieved from a smart grid. Furthermore, this 
implies that a consumer having lower preference 
to energy consumption can utilize the ESS more 
efficiently. 

Moreover, <Figrue 8> shows the impacts of power 
capacity on performance. The top, middle and bottom 
lines represents the energy fees without considering 
an ESS, with adopting small size storage (Scenario 
4.3-A), and with adopting a large size storage 
(Scenario 4.3-B), respectively. Similar to the previous 
analysis, <Figrue 8> shows that more power capacity 
leads to lower energy fee. However, we need to note 
that it is quite difficult to conclude that a consumer 
has to adopt power capacity as large as possible to 
reduce energy fee, because we did not consider an 
ESS installation cost in our model. 

4.4. Impact of Efficiencies on the 
Performance

In this section, we discuss the impact of efficiencies 
on the performance. We investigate how a self-dis-
charging rate and round-trip efficiency affect the 
total operational efficiency of an ESS. The operational 
efficiency needs to be calculated considering losses 
that occur not only when an ESS charges and dis-
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charges but also as time passes. Therefore, let us 
define the operational efficiency by comparing total 
discharging volume to total charging volume as fol-
lows:

(7)

<Figure 9> shows the example of operational effi-
ciency calculated for the scenario 4.3-B. The left fig-
ure shows the amount of charged energy. And then 
the storage will discharge internally to a consumer 
or externally to a grid, as shown in the middle of 
the figure. The right figure shows the total volume 
discharged from the storage. When a self-discharg-
ing rate is 10% and round-trip efficiency is 80%, 
the operational efficiency becomes 60.94%. Similarly, 
we investigate the change of the operational efficien-
cies for different self-discharging rates, round-trip 
efficiencies and interactions of both in the following 
subsections.

4.4.1. Impact of Efficiencies on the 
Performance–Self-discharging Rate

Self-discharge is the loss of energy due to parasitic 
loss in an ESS, where these losses may be due to 
mechanical friction, chemical reactions, and etc., de-
pending on the technology (Bradbury et al., 2014). 
The self-discharging rate is a measure of how quickly 
a cell will lose its energy due to unwanted chemical 
actions within the cell. The rate depends on the cell 
chemistry and the temperature. Typical self-discharg-
ing rates for common batteries are as follows: Lead 
Acid varies from 4% to 6% per month, Nickel 
Cadmium are from 15% to 20% per month, Nickel 
Metal Hydride is around 30% per month, and Lithium 
is from 2% to 3% per month (Electropaedia, 2014). 
Because of this property, we need to consider and 
do analysis to identify sensitivity of a self-discharging 
rate. In this analysis, we examine the performance 
of a self-discharging rate in an interval of 10%. Other 
variables are controlled as given in the following 
table.

For this analysis, the results are shown in 

5k 10k 15k 20k 25k
0

0.5MWh

1.0MWh

1.5MWh

2.0MWh

2.5MWh

3.0MWh

Coefficient of consumer utility

C
h
a
rg

in
g
 c

a
p
a
c
it
y

 

 

0 5k 10k 15k 20k 25k

0.5MWh

1.0MWh

1.5MWh

2.0MWh

2.5MWh

3.0MWh

Coefficient of consumer utility

E
x
te

rn
a
l d

is
c
h
a
rg

in
g
 c

a
p
a
c
ity

5k 10k 15k 20k 25k
0

0.5MWh

1.0MWh

1.5MWh

2.0MWh

2.5MWh

3.0MWh

Coefficient of consumer utility

D
is

c
h
a
rg

in
g
 c

a
p
a
c
ity

 

 

0

0.025MWh

0.050MWh

0.075MWh

0.100MWh

In
te

rn
a
l d

is
c
h
a
rg

in
g
 c

a
p
a
c
ity

 

 

Input Quantity (Qc) Internal Discharging (Qs)

External Discharging (Qd)

Output Quantity (Qd+Qs)

<Figure 9> Charge Volume at Every Coefficient of Consumers’ Utility (Left)
Internal and External Discharge Volume at Every Coefficient of Consumers’ Utility (Middle)

Sum of Discharge Volume at Every Coefficient of Consumers’ Utility (Right)



An Operations Model for Home Energy Management System Considering an Energy Storage System and Consumer Utility in a Smart Grid

114  Asia Pacific Journal of Information Systems Vol. 27 No. 2

<Figure 10>. When the self-discharging rate is low 
implying small loss of energy, we can see the energy 
fee goes negative, which means that an ESS makes 
profits to a consumer by selling energy to a market 
and a consumer does not need to pay. Also, corre-
sponding operational efficiency becomes 1 as shown 
in a right graph. Also, we can see that energy fee 
starts dropping very drastically when the self-dis-
charging rate is between 0% and 30%.

Also, from the right hand side of <Figure 10> 
and <Table 7>, we can see that there is an inflection 
point of operational efficiency. The slope of opera-
tional efficiency, improvement of efficiency, increases 
by 10%, 8.96%, 6.04%, 9%, 9.43%, and 16.57%. For 
the self-discharging rates higher than 30%, improve-
ment of efficiency decreases from 10% to 6.04%. 
But, for the rates under 30%, the marginal operational 
efficiency increases from 6.04% to 16.57%. This im-

<Table 6> The Parameters for Analyzing Effects of a Self-discharging Rate

Fixed Parameter Basic Status
Round-trip efficiency ( ) 100% (no loss)
Self-discharging rate ( ) 0% ~ 100%

Power capacity (Qmax) 20kW
Storage capacity (Imax) 80kWh (4 hour)

Consumer utility function (α ) 0
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<Figure 10> Energy Fee and Operational Efficiency Under a Self-discharging Rate
Change of Energy Fee by a Self-discharging Rate ( ) (Left)

Change of Operational Efficiency by a Self-discharging Rate ( ) (Right)

<Table 7> The Impact of a Self-discharging Rate on Operational Efficiency 
*A Shaded Part Means an Inflection Point of Operational Efficiency

Self-discharging rate ( ) 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%
Operational efficiency - - - - 40.00% 50.00% 58.96% 65.00% 74.00% 83.43% 100%

Improvement of efficiency - - - - - 10.00% 8.96% 6.04% 9.00% 9.43% 16.57%
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plies that a self-discharging rate could be very critical 
on the total ESS operational efficiency beyond a cer-
tain threshold.

4.4.2. Impact of Efficiencies on the 
Performance–Round-trip Efficiency

Round-trip efficiency is the ratio of output-to-input 
energy for a storage device. In general, storage system 
use direct current whereas grid system uses alternat-
ing current. Thus, it needs a converter, so called 
power conversion system (PCS). Transformation 
process occurs loss of energy. It is called round-trip 

efficiency, and it occurs due to the limitation of me-
chanical technology. Thus, we conduct experiments 
regarding round-trip efficiency and operational 
efficiency. Other parameters are given in <Table 8>. 

Results about round-trip efficiency are shown in 
<Figure 11> and <Table 9>. The trends of changes 
of energy fee and operational efficiency are similar 
to those of a self-charging rate. However, one different 
characteristic of round-trip efficiency is a constant 
slope of operational efficiency. Round-trip efficiency 
is directly connected to the operational efficiency. 
For example, if round trip efficiency increases by 
10%, operational efficiency increases by 10%.

<Table 8> The Parameters for Analyzing Effects of Round-trip Efficiency

Fixed Parameter Basic Status
Round-trip efficiency ( ) 0% ~ 100%
Self-discharging rate ( ) 0% (no loss)

Power capacity (Qmax) 20kW
Storage capacity (Imax) 80kWh (4 hour)

Consumer utility function (α ) 0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
-1,400M

-1,200M

-1,000M

-800M

-600M

-400M

-200M

0

200M

400M

RRRRR-RRRRRRRRRRRRRRRR Rη

E
n

e
rg

y
 f
e

e
 (

K
R

W
)

 

 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

RRRRR-RRRRRRRRRRRRRRRR Rη

O
p

e
ra

ti
o

n
a

l 
E

ff
ic

ie
n

c
y

 

 

ORRRaRRRRalRRRRRRRRRRR

RRRRgRRRRR

<Figure 11> Energy Fee and Operational Efficiency Under Round-trip Efficiency ( )
Change of Energy Fee by Round-trip Efficiency ( ) (Left)

Change of Operational Efficiency by Round-trip Efficiency ( ) (Right)

<Table 9> The Impact of Round-trip Efficiency on Operational Efficiency

Round-trip Efficiency( ) 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Operational Efficiency - - 20% 30% 40% 50% 60% 70% 80% 90% 100%
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4.3.3. Interaction between a Self-discharging 
Rate and Round-trip Efficiency

The total operational efficiency is determined by 
both efficiencies; a self-discharging rate and round-trip 
efficiency. Therefore, we need to consider those effi-
ciencies simultaneously. <Table 10> shows the varia-
tions by interaction between a self-discharging rate 
and round-trip efficiency.

This table can give a managerial implication for 
predicting operational efficiency and also can give 
a guideline to establish management plan. For exam-
ple, suppose that a self-discharging rate is 10% and 
round-trip efficiency is 80%. In this case, operational 
efficiency is 60.94%. Under this condition, if a service 
provider would like to improve efficiency of an ESS 
or to construct a new ESS, he or she might improve 
a self-discharging rate rather than round-trip effi-
ciency or it might be better policy to purchase 
ESS with a lower self-discharging rate. The reason 
is that the increment of a self-discharging rate by 
10% improves operational efficiency by 19.06% 
(=80.00-60.94), while the increment of round-trip 
efficiency by 10% improves operational efficiency 
by 10.96% (=71.90-60.94). 

Also, we need to note that the total operational 
efficiency cannot be calculated by a simple 
multiplication. For example, the operational effi-
ciency is 80% as round-trip rate is 0.8 with a self-dis-
charging rate of 1, but the operational efficiency is 
83.43% as a self-discharging rate is 0.1 with round-trip 
efficiency of 0. We can see that the latter cannot 
be calculated by the multiplication of 0.9 (=1-0.1) 
and 1. Furthermore, when we consider combination 
of two scenarios, the multiplication value is 0.6674 
(= but it is not equal to the operational efficiency 
60.94% given in the table). This result is caused be-
cause self-discharging occurs continuously over time 
and so the losses can be different depending on the 
operations schedule. For example, discharging at time 
t and at time t+1 will be different because the oper-
ations of discharging at time t+1 result in more loss 
during the one hour, and so the amount of loss 
will be different even for the same ESS. 

4.5. The Impact of Energy Storage Capacity

In this section, we consider the impact of energy 
storage capacity on operational efficiency. In a prior 
study (Akhil et al., 2013), the ESS for arbitrage is 

<Table 10> The Interaction between a Self-discharging Rate and Round-trip Efficiency to Operational Efficiency 

Interaction to operational 
efficiency

Self-discharging rate (lower value is better)
0.6 0.5 0.4 0.3 0.2 0.1 0

Round-trip 
efficiency 

(high value is 
better)

0.2 - - - - - - 20.00%
0.3 - - - - - - 30.00%
0.4 - - - - - - 40.00%
0.5 - - - - 40.00% 40.94% 50.00%
0.6 - - - 42.00% 43.73% 47.53% 60.00%
0.7 - - 42.00% 47.95% 51.14% 53.51% 70.00%
0.8 - 40.00% 48.00% 50.62% 57.73% 60.94% 80.00%
0.9 - 45.00% 54.00% 57.56% 63.40% 71.90% 90.00%
1.0 40.00% 50.00% 58.96% 65.00% 74.00% 83.43% 100.00%
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discussed for the 1-1000kW size of power capacity 
and for 2-6 hour discharging time of energy storage 
capacity. Similarly, we conduct simulations for identi-
fying relationship between operational efficiency and 
energy storage capacities of 2-8 hours for a given 
power capacity 20kW. Scenarios and parameters for 
the analysis are given in <Table 11>. Scenario 4.5-A 
is the base scenario to check the impact of storage 
capacity for a fixed round-trip efficiency and self-dis-
charging rate. Also, Scenario 4.5-B and Scenario 4.5-C 
are the cases in which a self-discharge rate and 
round-trip efficiency varies. 

4.5.1. The Impact of Storage Capacity
- (Scenario 4.5-A)

In this section, we examine the impacts of storage 
capacity when round-trip efficiency and a self-dis-
charging rate are fixed and storage capacity varies 
from 40kWh to160 kWh. For the different storage 
capacities, we derived results about energy fee, operat-
ing revenue, and operational efficiency. Like our in-
tuition, energy fee that a consumer should pay is 
decreasing and operating revenue that a consumer 
can make by sales of energy are increasing when 
storage capacity increases. However, interestingly, the 
operational efficiency of an ESS is decreasing as the 
capacity increases. This result happens because as 
charging duration becomes longer the amount of 
loss becomes larger. Also, for these all graphs, we 

could see that there exist thresholds which energy 
fee, revenue, and operational efficiency are not im-
proved beyond. As shown in <Figure 12> and <Table 
12>, the threshold is 4-hour storage capacity. This 
implies that 4-hour energy capacity is an optimal 
point to maximize profit and efficiency on the given 
situation. Also, we could see that the changes of 
energy fee, revenue, and efficiency are very sensitive 
to the storage capacity smaller than 4-hour. 

4.5.2. The Impact of Storage Capacity with 
Various Self-discharging Rates (Scenario 
4.5-B)

In this section, we study sensitivities of energy 
storage capacity and a self-discharging rate while 
setting perfect round-trip efficiency condition. As 
in <Figrue 14>, the storage capacity in X-axis changes 
from 2 hours to 8 hours, and revenues that a consumer 
can make and operational efficiencies are plotted 
along the Y-axis. Also, the analyses are repeated for 
different self-discharging rates from 0 to 0.6 labeled 
as SDR. As shown in <Figure 13>, when the self-dis-
charging rate (SDR) become lower, the revenue sig-
nificantly increases. Also, the difference between a 
lower self-discharging rate and a higher rate becomes 
larger, when energy capacity increases. Moreover, 
we can see that operational efficiency decreases as 
the self-discharging rate becomes higher. Also, from 
<Table 13>, we can also find the thresholds max-

<Table 11> The Scenarios for Analyzing Impacts of Energy Capacity on Operational Efficiency

Fixed Parameter Scenario 4.5-A Scenario 4.5-B Scenario 4.5-C
Round-trip efficiency ( ) 80% 100% (No loss) 0% ~ 100%,
Self-discharging rate ( ) 10% 0% ~ 100%, 0% (No loss)

Power capacity (Qmax) 20kW 20kW 20kW
Storage capacity (Imax) 40kWh~160kWh (2h~8h) 40kWh~160kWh (2h~8h) 40kWh~160kWh (2h~8h)

Consumer utility function (α ) 0 0 0
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imizing revenue. For a self-discharging rate of 0.2 
and 0.1, the corresponding threshold is 3-hour and 

5-hour capacity, respectively. And we can see that 
for the higher self-discharging rate, 2-hour storage 
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<Table 12> The Results of Energy Capacity on Operational Efficiency 
* A Shaded Part Represents a Threshold 

Energy Capacity 2h 3h 4h 5h 6h 7h 8h
Operational Efficiency 63.65% 61.17% 60.94% 60.94% 60.94% 60.94% 60.94%

Operation Revenue (million KRW) 41.53 44.87 44.96 44.96 44.96 44.96 44.96
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capacity of an ESS is enough to perform optimally. 

4.5.3. The Impact of Storage Capacity with 
Various Round-trip Efficiencies (Scenario 
4.5-C)

Scenario 4.5-C investigates the impact of storage 
capacity when round-trip efficiency varies and a 
self-discharging rate is fixed. Since round-trip effi-
ciency is directly connected to operational efficiency, 
we can see that the energy fee decreases and revenue 
steadily increases as round-trip efficiency (RTE) in-
creases as shown in <Figure 14>. This result suggests 

that larger energy storage capacity make their oper-
ation revenue increase. However, we need to note 
that larger size of ESS costs more. 

In summary, the above results from subsections 
4.5.1 to 4.5.3 show that, even though an ESS has 
the same energy capacity, the energy fee and operation 
revenue can be different depending on round-trip 
efficiency and a self-discharging rate. More im-
portantly, how much energy is charged and dis-
charged or how large a size of an ESS is required 
also needs to be changed depending on the efficiency 
and the rate.

Findings from the above simulation results and 
their implications can be summarized as follows.

<Table 13> Operational Efficiency for Different Self-discharging Rates and Energy Capacities
* A Shaded Part Represents Thresholds

Interaction to operational 
efficiency

Self-discharging rate (the lower is the better) ( )
0.6 0.5 0.4 0.3 0.2 0.1 0

Energy 
Storage 

Capacity

2h 40.00% 50.00% 58.96% 65.00% 75.12% 85.78% 100.00%
3h 40.00% 50.00% 58.96% 65.00% 74.00% 84.42% 100.00%
4h 40.00% 50.00% 58.96% 65.00% 74.00% 83.43% 100.00%
5h 40.00% 50.00% 58.96% 65.00% 74.00% 83.09% 100.00%
6h 40.00% 50.00% 58.96% 65.00% 74.00% 83.09% 100.00%
7h 40.00% 50.00% 58.96% 65.00% 74.00% 83.09% 100.00%
8h 40.00% 50.00% 58.96% 65.00% 74.00% 83.09% 100.00%
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<Figure 14> The Impact of Energy Capacity with Various Round-trip Efficiencies
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1) An ESS is more effective to a consumer who 
is more interested in maximizing profits from 
the perspectives of energy fee and consumption 
than a consumer who seeks a higher utility 
from energy consumption. 

2) A self-discharging rate may be very critical on 
the total ESS operational efficiency beyond a 
certain threshold. In other words, an ESS with 
lower self-discharging rate than the threshold 
can be much more efficiently operated. 

3) The operational efficiency considering both a 
self-discharging and round-trip efficiency can-
not be easily estimated by simple calculation 
such as multiplication, so our result can provide 
a guidance to determine ESS specifications. 

4) For the different level of self-charging rate, the 
optimal energy storage capacity can be different 
and the operations policy can be changed.

Ⅴ. Description of Decision Support 
System

In this research, we proposed an ESS operations 
model with consumers' utility which can be applied 
to automation of an ESS. Unlike previous model 
which considered only price arbitrage of an ESS, 
our model focuses on the automation of ESS oper-
ation reflecting on the consumer’s utility on energy 
consumption. Because most consumers do not care 
about an ESS but are interested in profits and their 
own utilities, energy management system is required 
to satisfy the consumers’ needs. Also, the system 
has to be able to suggest different operations policies 
depending on different levels of utility. Besides, as 
mentioned in Krishnamurti et al. (2013), what types 
of information the In-Home Display (IHD) needs 
to be provided, what types of dataset is required 

and how the information is communicated is very 
important. In this research, we showed that, for the 
device to be much smarter and automatically react 
to a consumer, more data and information would 
be required in addition to generic characteristics as 
shown in Krishnamurti et al. (2013) and Abrahamse 
et al. (2005). Thus, in this section we describe how 
the proposed model and algorithm can be embedded 
in the decision support system. 

At the data collecting level as in <Figure 15>, 
our model requires database to collect exogenous 
data and endogenous data. Since profits come from 
price arbitrage, the database needs market price data 
of energy. Also, technical specifications of an ESS 
such as round-trip efficiency and a self-discharging 
rate should be included in the database because per-
formance of an ESS is closely related as shown in 
our results. Moreover, on the consumer side, data 
of historical consumption and preference to the con-
sumption are required. Then, at the data analysis 
level, we need to reinterpret the data and transform 
into structured data which is appropriate for our 
operations model. In other words, since many differ-
ent types of datum are imported from the ESS, other 
machines and a consumer but data required for our 
operations model is limitative, the data needs to be 
reorganized and sorted so as to be used efficiently. 

After that, the manipulated data is launched on 
the optimization engine. The optimization engine 
estimates profits that a consumer will earn and pro-
vides charging and discharging policies. These results 
can be shown in in-home display (IHD) or advanced 
metering infrastructure (AMI) which can be con-
trolled by a consumer. In addition, the ESS decision 
support system developer can customize an ESS oper-
ations model and the consumer can decide the level 
of utility, for example low-utility, medium-utility and 
high-utility. From the information such as profits, 



Juhyeon Kang･Yongma Moon

Vol. 27 No. 2 Asia Pacific Journal of Information Systems  121

efficiency and utility shown in IHD, a consumer 
makes a decision regarding satisfaction. The feedback 
is reflected on the next time horizon of optimization. 
Based on the updated feedback, the system updates 
exogenous and endogenous data. Throughout this 
process and algorithm, a system can adjust consumer 
utility and bring different management policies and 
performance. 

Ⅵ. Conclusions and Further Studies

We proposed an ESS operations model for home 

energy management system considering consumer’s 
utility in which we maximize profits obtained by 
price arbitrage. While most researches focus only 
on large-scale ESS energy management system and 
are interested in how much a consumer can make 
profits throughout the arbitrage, we notice that some 
segments of consumers at home are more likely to 
enjoy energy consumptions. Thus, we suggest an 
operations model for a residential consumer who 
has multi-objectives to lower energy fee by price 
arbitrage and increase utility as controlling trade-off 
between two. From the model, our paper discusses 
the impacts of consumer’s utility on the performance 

<Figure 15> Decision Support System of ESS Operations (i.e., HEMS)
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and operations policies for HEMS. Also, we inves-
tigated the impacts of technical specification of ESS 
on operational efficiency of the whole system and 
revenue. 

In this paper, we compared scenarios in which 
consumer utility is considered or not. The result 
shows that there are difference on operations policies, 
especially to a consumer with lower utility. Specifically, 
a consumer who originally has lower preference to 
consumption can gain much higher utility only by 
paying a little bit more. This result shows that a 
consumer having lower preference to energy con-
sumption can utilize the ESS more efficiently to gain 
more utility, because the consumer can use cheaper 
stored energy rather than more expensive energy 
directly retrieved from a smart grid. 

Moreover, a self-discharging rate or round-trip 
efficiency is likely to be regarded simply as a factor 
of benefit reduction. However, we found that the 
operational efficiency of the whole system cannot 
be calculated by a simple multiplication of two pa-
rameters, and a self-discharging rate and round-trip 
efficiency can affect operations policies and the opti-
mal size of energy storage capacity. Our results show 
that there exists a threshold that operational effi-
ciency does not change even though energy storage 
capacity increases. Since energy fee is not reduced 
beyond the threshold, a consumer does not need 
to have larger storage capacity than the threshold. 
Besides, we found that how much energy is charged 
and discharged or how large size of an ESS is re-
quired could be very sensitive to round-trip effi-
ciency and a self-discharging rate. Especially, it is 
shown that when the rate is lower and the efficiency 
is higher, revenues that a consumer makes increase 
significantly. This implies that a self-discharging rate 
and round-trip efficiency can be very crucial factor 
that should be considered when a consumer pur-

chases an ESS. Furthermore, our analyses show that 
a self-discharging rate and round-trip efficiency leads 
to the change of operations policy and the techno-
logical specifications are very important factors to 
be considered, not to mention reduction of benefits. 
In a smart grid that an electricity price changes over 
time and also consumer’s utility needs to be satisfied 
as described in Fisher (2008), Darby (2010), and 
Department of Energy (2017), the system becomes 
more complex, which emphasizes the necessity of 
an automated control model in the energy manage-
ment system. 

However, in this paper, we do not consider un-
certainty which could be very important factor as 
in Carpinelli et al. (2014) and Moon (2014). Since 
market price uncertainty and consumer demand un-
certainty as mentioned in Carpinelli et al. (2014) 
and Moon (2014) can change profits and operations 
policy, taking uncertainty into account might be ex-
tension of this research. Also, our proposed model 
does not consider upfront costs such as a purchasing 
cost and an installation cost of an ESS with HEMS. 
For example, if the upfront costs do not increase 
linearly with respect to the size or they are very 
dependent on technologies, the operations policy 
could be changed. Also, the consideration of those 
costs would be more practical for our model to be 
applicable to industry. Moreover, updating rule can 
be included in our model as another extension. In 
our model, a consumer needs to update utility in-
formation and energy management system re-opti-
mizes periodically. But, embedding machine learning 
in the system can produce results more conveniently. 
Such an evolutionary algorithm can help a consumer 
not necessarily give any feedback to the system in 
the long term. 
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