• 제목/요약/키워드: Energy saving windows

검색결과 63건 처리시간 0.025초

AHP 방법을 이용한 노후학교 에너지절감을 위한 요소기술의 우선순위 결정 (Determining the Priority of Factors for Reducing Energy at Deteriorated School Buildings Using AHP Method)

  • 이상춘;최영준;최율
    • KIEAE Journal
    • /
    • 제11권6호
    • /
    • pp.127-132
    • /
    • 2011
  • Since the late 20th century, countries of the world have made every effort to solve environmental problems due to global warming. The Korean Government has also made various efforts on reducing energy and $CO_2$ emission under the motto of "Low-Carbon Green Growth". In order to achieve the goal to reduce energy in the construction field, severe design standards and regulations on saving energy in new buildings have been established. However, for maximizing the reduction of energy in buildings, it is time to focus on deteriorated buildings where applications of energy saving designs and techniques have been insufficient. Especially, there are little guidelines and researches on reducing energy through remodeling at deteriorated school buildings which were built over 20 years ago. This paper suggests the priority of factors to reduce energy on the remodeling process at deteriorated school buildings using the AHP(Analytic Hierarchy Process) method. For applying the AHP method, the survey of staffs in the Education Offices and board members in the Korea Institute of Ecological Architecture and Environment was conducted via e-mail. As a result, factors of insulation, daylighting, system control, and windows turned out important in the energy reducing remodeling process at deteriorated school buildings, while factors of artificial lighting, solar heating, ventilation, and system did relatively unimportant.

A Study on the POE-based Energy Utilization Satisfaction Analysis for Passive House in Germany

  • 정해조;김수용;양진국
    • 한국태양에너지학회 논문집
    • /
    • 제36권3호
    • /
    • pp.17-23
    • /
    • 2016
  • Passive House represents energy-saving technologies. It aims to save energy and provide comfort to the dwellers. The design and construction began in Germany, where it is commonly observed. In South Korea, implementation of the Passive House concept is difficult because of high construction costs and technological problems. This study performed a POE analysis to analyze the extents of satisfaction and knowledge about Passive House among those who live in them in Germany. The results found high satisfaction with functional aspects, such as ventilation, windows, doors, and the thermal bridge. These research results will provide application criteria for Passive House construction in South Korea.

스마트윈도우용 대면적 액정셀 제작과 특성에 대한 연구 (A Study on Fabrication and Characteristics of Large Area Liquid-Crystal Cell for Smart-Window)

  • 이승우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 추계학술대회
    • /
    • pp.166-167
    • /
    • 2019
  • Smart windows are used as windows and doors to determine cooling and heating efficiency in the construction field. It's characteristics can increase the energy saving efficiency. In addition, the function of the smart window that can control the light transmittance transmitted from the external environment of the building to the building according to the needs of the user is attracting attention. In this study, a liquid crystal cell capable of controlling light transmittance of 297 × 210 ㎟ was fabricated by using a liquid crystal device as an optical shutter. Analysis of transmittance change according to driving voltage and driving stability according to thermal environment, We confirmed the applicability of building exterior materials as smart windows.

  • PDF

노후 학교건물의 창호 교체에 따른 부하분석 (Analysis of Heating and Cooling Load Profile According to the Window Retrofit in an Old School Building)

  • 이예지;김주욱;송두삼
    • 설비공학논문집
    • /
    • 제29권9호
    • /
    • pp.455-462
    • /
    • 2017
  • The purpose of this study is to analyze heating and cooling load variation due to envelope retrofits in an old school building. In a previous study, envelope retrofit of an old school building resulted in annual energy consumption reduction. However, cooling energy consumption increased with the envelope retrofit. This is because of high internal heat generation rates in school buildings and internal heat cannot escape through windows or walls when the envelope's thermal performance improves. To clarify this assumption, thermal performance changes due to envelope retrofits were analyzed by simulation. Results revealed indoor temperature and inner window surface temperature increased with high insulation level of windows. Indoor heat loss through windows by conduction, convection and radiation decreased and resulted in an increase of cooling load in an old school building. From results of this study, energy saving impact of envelope retrofits in an old school building may not be significant because of high internal heat gain level in school buildings. In case of replacing windows in school buildings, local climate and internal heat gain level should be considered.

3L House의 설계, 시공 및 평가 (The Technology Applied 3 Liter House, Super Energy Saving Building)

  • 박선효;박용승;원종서
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.814-819
    • /
    • 2006
  • This research is on the design and introducing of integrated thermal performance of super energy saying building, called 3 Liter house which can be sustained with 3 liter oil(kerosene) per $yr.m^2$. 3 liter houses(Passive houses) offer extended living comfort with only 15 to 20% of the space heating demand of conventional new building. To achieve this purpose, the efficiency of building components is improved, such as walls, windows or ventilation system and the construction technology is improved, such as the prevention of thermal bridge and the air tightness. The fuel cell is used as alternative energy. Energy consumption of 3L house is 2.08 [liter/$yr.m^2$] in monitoring result of $2006/2/1{\sim}2/7$ and ACH50 is 0.67 in result of Blow Door Test, therefore 3L House is well- insulated and well- airtighted house.

  • PDF

역사적 건축물의 에너지 효율 향상을 위한 계획기법 -서양의 연구동향 및 사례를 중심으로- (Technical Measures for Improving Energy Efficiency in Historic Buildings -Focused on Researches and Case Studies of the West-)

  • 김태영
    • 한국농촌건축학회논문집
    • /
    • 제20권1호
    • /
    • pp.69-76
    • /
    • 2018
  • This study is to research technical measures for improving energy efficiency in the conservation and reuse of historic buildings focused on the recent research trends and case studies of the west. These measures are broadly classified into three types, the passive measures for saving energy and increasing comfort, the most cost-effective energy saving strategies, and the renewable energy sources. Firstly, the passive measures are divided into the elements and systems. The passive elements are awnings and overhanging eaves, porches, shutters, storm windows and doors, and shade trees. There are also the natural ventilation systems such as the historic transoms, roofs and attics to improve airflow and cross ventilation to either distribute, or exhaust heat. Secondly, the most cost-effective energy efficiency strategies are the interior insulation, airtightness and moisture protection, and the thermal quality improvement of windows. The energy efficiency solutions of modern buildings are the capillary-active interior insulation, the airtightness and moisture protection of interior walls and openings, and the integration of the original historic window into the triple glazing. Beyond the three actions, the additional strategies are the heat recovery ventilation, and the illumination system. Thirdly, there are photovoltaic(PV) and solar thermal energy, wind energy, hydropower, biomass, and geothermal energy in the renewable energy sources. These energy systems work effectively but it is vital to consider its visual effect on the external appearance of the building.

소규모 민간건축 시공현장에 있어서 창호에너지 소비효율등급제의 적용 현황에 관한 연구 (A Study on the Application State of the Fenestration Energy Consumption Efficiency Rating System in Construction Field)

  • 강석표;진은미;윤여면;박상은
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.24-25
    • /
    • 2014
  • Up to now, most the fenestration industry is consisted of glazing and window frame in Korea. According to the Fenestration Energy Consumption Efficiency Rating System and Energy Saving Design Standards of Buildings, u-value of fenestration is defined as the value of calculation with glazing and frame. For this reason, when applying for a building permit, in most cases, the official approval test report of the set of windows and doors is used. Nevertheless, in windows construction progresses, most construction manager take delivery of the glazing and frame separately. For those reason, windows and doors are constructed regardless of the report of the Fenestration Energy Consumption Efficiency Rating System in most construction fields. From now on, the research of the connection method between reality of policy and reality of construction fields should be carried out.

  • PDF

건물 외피의 열특성과 외주부 깊이에 따른 PAL에 관한 연구 (A study on the PAL according to thermal characteristic of building skin and perimeter zone depth)

  • 김지혜;김환용
    • 한국태양에너지학회 논문집
    • /
    • 제30권2호
    • /
    • pp.33-38
    • /
    • 2010
  • The perimeter zone is space which receives a significant effect of ambient condition, it is necessary to improve the thermal performance in order to building energy saving. For this reason, a lot of study about the active approach is being performed, such as perimeter-less air conditioning system. But the performance of the perimeter zone is necessary to improve, through the passive approach. Therefore, the purpose of this study is to provide basic materials of energy-saving design of perimeter zone, based of the PAL that simulation changing the thickness of insulation and the rate of windows.

공공기관 에너지 효율등급 향상을 위한 적용 설계요소에 관한 연구 - 공공청사 리모델링시 패시브 디자인요소를 중심으로 - (An Architectural Study on the Improvement of Energy Efficiency of Public Institution - Focused on Public Office Buildings Remodeling of Passive Design Elements -)

  • 조정철;박재승
    • 한국실내디자인학회논문집
    • /
    • 제21권4호
    • /
    • pp.114-120
    • /
    • 2012
  • There are lots of buildings which were built before the Legislation on building energy rating system. Remodeling of the buildings would be required for an improvement of the building energy rating system was enforced by the government. In the Passive Building Design, Elements which will be used for the remodeling are Insulation, Window, External venetian blind, Heat exchanger. The Purpose of this study is to indicate a Method for the improvement of Energy saving by an analysis of Construction Cost, Cost Evaluation, Energy performance Efficiency in applied design elements. In this study, the remodeling of existing public buildings to improve energy efficiency rating was applied to extract the elements of design-specific energy performance, efficiency, and the application of the designs that has been analyzed. The results were as follows: applying the design-specific cost-effective investment that represents the economy (investment efficiency/%) surveyed the average insulation(7.0%), triple glazed windows(10.1%), double glazed windows(12.1%), external shading(24.5%), and Heat(77.2%) were analyzed in order to be more efficient. Analysis of the basis of information on the existing public buildings to improve energy efficiency rating for the remodeling depending on driving conditions at a degree of individual difference. The main effect, however, depending on economic investment, design elements, heat exchangers, external awning, double glazed windows, triple glazed windows, insulation, is recommended as review of the order shall be determined.

  • PDF

쿤-터커 조건을 이용한 건물의 에너지성능과 비용 최적화방법 (Optimization Method of Building Energy Performance and Construction Cost Using Kuhn-Tucker Conditions)

  • 원종서;구재오
    • KIEAE Journal
    • /
    • 제3권2호
    • /
    • pp.51-58
    • /
    • 2003
  • The purpose of this study is to present rational methods of multi-criteria optimization of the shape of energy saving buildings. The object is to determine the optimum dimension of the shape of a building, based on the following criteria: minimum building costs (including the cost of materials and construction) and yearly heating costs. Mathematical model described heat losses and gains in a building during the heating season. It takes into consideration heat losses through wall, roof, floor and windows. Particular attention was paid to have a more detailed description of heat gains due to solar radiation. On the assumption that shape of building is rectangle in order to solve the problem, the proportions of wall length and building height are determined by using non-linear programing methods(Kuhn-Tucker Conditions). The results constitute information for designers on the optimum proportions of wall lengths, height, and the ratios of window to wall areas for energy saving buildings.