• Title/Summary/Keyword: Energy released rate

Search Result 108, Processing Time 0.028 seconds

Study on the thermal Property and Aging Prediction for Pressable Plastic Bonded Explosives through ARC(Heat-Wait-Search method) & isothermal conditions (ARC(Heat-Wait-Search method)와 isothermal 조건을 이용한 압축형 복합화약의 열적 특성 및 노화 예측 연구)

  • Lee, Sojung;Kim, Jinseuk;Kim, Seunghee;Kwon, Kuktae;Chu, Chorong;Jeon, Yeongjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.172-178
    • /
    • 2017
  • Thermal property is one of the important characteristic in the field of energetic materials. As the energy material is released during decomposition, DSC(Differential Scanning Calorimetry) is frequently used for the thermal analysis. In case of the dynamic DSC measurements, thermal dynamic change like melting is prevented from the thermal property measurements. And due to the predicting kg scale, the conditions of the heat exchange with the environment significantly is changed. In this study, As the method to resolve the problem, we predict the thermal aging property using the AKTS thermokinetic program from DSC measurements which performed isothermal method. Predicting the thermal aging properties from ARC(Accelerating Rate Calorimetry) measurement, we compare two results.

  • PDF

Fermentative Hydrogen Production from the Pretreated Food-Processing Waste and Sewage Sludge using Chemical/Ultra-Sonication (두부제조폐기물과 하수슬러지의 화학/초음파 전처리에 의한 가용화 및 혐기발효 수소생산)

  • Kim, Mi-Sun;Lee, Dong-Yeol;Kim, Dong-Hun;Kim, Ok-Sun;Lim, So-Yung
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.6
    • /
    • pp.580-586
    • /
    • 2010
  • Acid and alkali pretreatments were applied to tofu processing waste (TPW) to increase the solubility of ingredients in TPW. Pretreatment at 1.0% of HCl and 2.5% of NaOH condition resulted in the increase of SCOD concentration from 3.2 g COD/L to 27 g COD/L and 33 g COD/L, respectively. The acid and alkali-pretreated TPW was studied for its fermentative $H_2$ production capacity in batch mode using a thermophillic mixed culture. Alkali pretreatment on presence of 2.5% NaOH exhibited more soluble portion released compared to acid pretreatment using HCl, however the $H_2$ production from acid pretreated TPW was better than alkali-pretreated TPW probably due to the sodium inhibition on microbial activity. In addition, sewage sludge was externally added to the acid-pretreated (1.0% HCl) TPW by 20% (on volume basis). Average H2 production rate was increased from 31 to 78 ml/L-broth/hr, and it was attributed to the high buffer capacity and abundant nutrients especially divalent cation in sewage sludge.

Measurement of the applicability of various experimental materials in a medically relevant reactor neutron source Part One: Material characteristics acting as a carrier for boron compounds during neutron irradiation

  • Ezddin Hutli ;Peter Zagyvai
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2984-2996
    • /
    • 2023
  • A 100 kW thermal power pool-type light water reactor and Pu(Be) as a fast neutron source were used to determine the appropriate carrier for irradiating boron-containing samples with neutron beams. The tested materials (carriers) were subjected to neutron beams in the reactor's tangential channel. The geometrical arrangement of experimental facilities relative to the neutron beam trajectory, as well as the effect of sample thickness on the count rate, were investigated. The majority of the detectable charged particles emitted by the neutron beam's interaction with tested materials and the detector's detecting layer are protons (recoiled hydrogen) and particles generated in nuclear reactions (protons and alpha particles), respectively. Stopping and Range of Ions in Matter (SRIM) software was used to do theoretical calculations for the range of expected released particles in various materials, including human tissue. The results of measurement and calculation are in good agreement. According to experiments and theoretical calculations, the number of protons emitted by tissue-like materials may commit a dose comparable to that of boron capture reactions. Furthermore, the range of protons is significantly larger than that of alpha particles, which most probably changes dose distribution in healthy cells surrounding the tumor, which is undesirable in the BNCT approach.

Study on Flame Retardancy and Thermal Resistance Properties of Phenolic Foam and Polyurethane Foam (페놀 폼과 폴리우레탄 폼의 난연 및 내열성 연구)

  • Lee, Ju-Chan;Seo, Jung-Seok;Kim, Sang Bum
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • In this study, flame retardancy of polyurethane foam and phenolic foam were investigated by addition of phosphorous flame retardants. The thermal degradation behavior of polyurethane foam and phenolic foam in the presence of flame retardants has been studied by thermogravimetric analysis(TGA). Heat release rate(HRR), mean HRR, mass loss rate(MLR), total smoke released(TSR) and limited oxygen index(LOI) were tested by cone calorimeter. From the test results, Phenolic foam showed low HRR, MLR and TSR than polyurethane foam.

An estimation and radioactivity measurement for radiocarbon(14C) in the Korean nuclear power plants

  • Seo Ra Yang;Jin Hong Lee;Jae Hwan Yang;Geun-Il Park
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.2906-2915
    • /
    • 2024
  • Radiocarbon (14C), with a radioactive half-life of approximately 5730 years, poses a long-term environmental contamination risk when released into the atmosphere. The quantification analysis of its release estimates plant-specific generation rates based on factors such as plant power, core neutron flux distribution, and the volume of water exposed to this flux. Utilizing the improved estimation method, the 14C production rate for several Korean Pressurized Water Reactors (PWRs) was calculated. Also, improvements in measurement methods through sampling have also been made. These enhancements include the verification of the absorption method versus the mixing method. The results of this study indicate that plant-specific 14C production rates range from 0.213 to 0.317 TBq/yr, which are comparable to the global range observed in PWRs. Furthermore, the study evaluated a quenching correction curve for a liquid scintillation counter using two quenching correction methods: the external standard method and the internal standard method. The accuracy of these methods with 72 samples was validated with an average relative error within ±2.5%. The relative error of the mixing method, when compared to the direct absorption method, was found to be within ±20%. This finding underscores the validity of the improved measurement technique.

An Experimental Study on the Freezing Protection Valve Using Phase Change Material(PCM) for the Heat Exchanger (상변화물질(PCM)을 이용한 열교환기용 동파방지밸브에 관한 실험적 연구)

  • Yun, Jea-Ho;Kim, Joung-Ha;Jeong, Soon-Young;Yang, Yoon-Sub;Kim, Seong-Hyun;Song, Duk-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.127-133
    • /
    • 2012
  • This paper is an experimental study on the freezing protection valve used for solar water heating, air-conditioning systems, and plumbing systems. When the phase change occurs from liquid to solid, most of the substances except water volumetrically shrink. And referred to as PCM(Phase Change Material) a substance with such properties, the phase change temperature varies depending on the material. To prevent the freezing of the plumbing system, such as air-conditioning system in the winter season, we developed a several types of freezing protection valve using PCM whose freezing temperature are $2-4^{\circ}C$. The working principle of the freezing protection valve is that the fluid inside the pipe is released to prevent the system-collapse when fluid temperature reaches the freezing temperature of the PCM. And then the valve is closed and returned to the original position automatically when the temperature of the operating fluid rises. In this paper, the operating temperatures, discharge flow rate and the response characteristics of the valve during the operation are tested and investigated. From the results of this research the freezing protection valves employing PCM are expected to be commercialized in the near future.

Development and Application of Radiological Risk Assessment Program RADCONS (방사능위해성평가 프로그램 RADCONS의 개발 및 적용)

  • Jeong, Hyojoon;Park, Misun;Hwang, Wontae;Kim, Eunhan;Han, Moonhee
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.1
    • /
    • pp.89-97
    • /
    • 2013
  • RADCONS Ver. 1.0 (RADiological CONSequence Assessment Program) was developed for radiological risk assessment in this study. A Gaussian plume model was used to analyze the fate and transport of radionuclides released into the air in case of accidents. Both single meterological data and time series meterological data can be used in RADCONS. To assess the radiological risk of the early phase after an accident, ED (Effective Dose) estimated by both deterministic and probabilistic approaches are presented. These EDs by deterministic and probabilistic will be helpful to efficient decision making for decision makers. External doses from deposited materials by time are presented for quantifying the effects of mid and late phases of an accident. A radiological risk assessment was conducted using RADCONS for an accident scenario of 1 Ci of Cs-137. The maximum of ED for radii of 1,000 meters from the accident point was 8.51E-4 mSv. After Monte-Carlo simulation, considering the uncertainty of the breathing rate and dispersion parameters, the average ED was 8.49E-4, and the 95 percentile was 1.10E-3. A data base of the dose coefficients and a sampling module of the meteorological data will be modified to improve the user's convenience in the next version.

Combustion Characteristics and Design of Fiber Mat Catalytic Burners (매트 형태 연소촉매를 사용하는 촉매버너의 구조와 연소특성)

  • Song, Kwang-Sup;Jung, Nam-Jo;Kim, Hee-Yeon
    • Journal of Energy Engineering
    • /
    • v.17 no.2
    • /
    • pp.100-106
    • /
    • 2008
  • Flameless fiber mat catalytic burners have been known as an effective heat source in industrial drying processes since heat obtained from combustion can be transferred to absorptive body by far-infrared radiation. In order to extend the application of fiber mat catalytic burner, novel fiber mat catalytic burners were manufactured and combustion characteristics of them were investigated. For diffusive catalytic burners, the efficiency of combustion was significantly affected by the installation direction and the temperature of catalytic bed perimeter influenced on the diffusion rate of oxygen which determined the combustion efficiency of catalytic burner. It was seen in premixed catalytic combustion that air content in premixed fuel gas was optimized at slightly higher than theoretical amount of air. Combustion heat released higher than 70% by radiant heat in premixed catalytic combustion likewise diffusive catalytic combustion.

Distillation of Cd- ZrO2 and Cd- Bi in Crucible With Splatter Shield

  • Kwon, S.W.;Kwon, Y.W.;Jung, J.H.;Kim, S.H.;Lee, S.J.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2018.11a
    • /
    • pp.103-103
    • /
    • 2018
  • The liquid cathode processing is necessary to separate cadmium from the actinide elements in the pyroprocessing since the actinide deposits are dissolved or precipitated in a liquid cathode. Distillation process was employed for the cathode processing owing to the compactness. It is very important to avoid a splattering of cadmium during evaporation due to the high vapor pressure. Several methods have been proposed to lower the splattering of cadmium during distillation. A multi-layer porous round cover was proposed to avoid a cadmium splattering in our previous study. In this study, distillation behavior of $Cd-ZrO_2$ and Cd - Bi systems were investigated to examine a multi-layer porous round cover for the development of the cadmium splatter shield of distillation crucible. It was designed that the cadmium vapor can be released through the holes of the shield, whereas liquid drops can be collected in the multiple hemisphere. The cover was made with three stainless steel round plates with a diameter of 33.50 mm. The distance between the hemispheres and the diameter of the holes are 10 and 1 mm, respectively. Bismuth or zirconium oxide powder was used as a surrogate for the actinide elements. About 40 grams of Cd was distilled at a reduced pressure for two hours at various temperatures. The mixture of the cadmium and the surrogate was distilled at 470, 570 and $620^{\circ}C$ in the crucible with the cover. Most of the bismuth or zirconia remained in the crucible after distillation at 470 and $570^{\circ}C$ for two hours. It was considered that the crucible cover hindered the splattering of the liquid cadmium from the distillation crucible. A considerable amount of the surrogate material reduced after distillation at $620^{\circ}C$ due to the splattering of the liquid cadmium. The low temperature is favorable to avoid a liquid cadmium splattering during distillation. However, the optimum temperature for the cadmium distillation should be decided further, since the evaporation rate decreases with a decreasing temperature.

  • PDF

Evaluation of Fracture Behavior of Adhesive Layer in Fiber Metal Laminates using Cohesive Zone Models (응집영역모델을 이용한 섬유금속적층판 접착층의 모드 I, II 파괴 거동 물성평가)

  • Lee, Byoung-Eon;Park, Eu-Tteum;Ko, Dae-Cheol;Kang, Beom-Soo;Song, Woo-Jin
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.45-52
    • /
    • 2016
  • An understanding of the failure mechanisms of the adhesive layer is decisive in interpreting the performance of a particular adhesive joint because the delamination is one of the most common failure modes of the laminated composites such as the fiber metal laminates. The interface between different materials, which is the case between the metal and the composite layers in this study, can be loaded through a combination of fracture modes. All loads can be decomposed into peel stresses, perpendicular to the interface, and two in-plane shear stresses, leading to three basic fracture mode I, II and III. To determine the load causing the delamination growth, the energy release rate should be identified in corresponding criterion involving the critical energy release rate ($G_C$) of the material. The critical energy release rate based on these three modes will be $G_{IC}$, $G_{IIC}$ and $G_{IIIC}$. In this study, to evaluate the fracture behaviors in the fracture mode I and II of the adhesive layer in fiber metal laminates, the double cantilever beam and the end-notched flexure tests were performed using the reference adhesive joints. Furthermore, it is confirmed that the experimental results of the adhesive fracture toughness can be applied by the comparison with the finite element analysis using cohesive zone model.