• Title/Summary/Keyword: Energy release rate

Search Result 435, Processing Time 0.023 seconds

A Fire Hazard Assessment of Interior Finish Materials (건물 내장재의 화재위험성 평가 방법)

  • 김운형
    • Fire Science and Engineering
    • /
    • v.12 no.2
    • /
    • pp.17-28
    • /
    • 1998
  • To propose a new fire hazard assessment criteria of interior finish materials, the properties and incident heat flux of interior finish materials in a compartment fires are investigated and compared by using flame spread model developed by Quintiere. The properties considered on which fire growth depend are including flame heat flux and thermal inertia, lateral flame spread parameter, heat of combustion and effective heat flux and thermal inertia, lateral flame spread parameter, heat of combustion and effective heat of gasfication. ISO Room Corner Test(9705) is applied in the model and the time for total energy release rate to reach 1MW is examined. The results are compared for the 24 different materials tested by EUREFIC. Dimensionless parameter a, b and ${\gamma}$b are used to develope a new method in which fire hazard of interior finish materials can be classified resulting from correlation between b and flashover time. Results show that if b greater than about zero, flashover time in the ISO Room-Corner Test is principally proportional to ignition time only.

  • PDF

Effect of moisture on interlaminar fracture toughness of CFRP composites (CFRP 복합재료의 층간파괴인성치에 미치는 수분의 영향)

  • 김형진;김종훈;고성위;김엄기
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.75-83
    • /
    • 1996
  • Polymeric composites can be subjected to a wide variety of environmemtal conditions in practical use. One of most important conditions to be considered in the stuctural design using such materials is the miisture envirnment. Thus the moisture effect on interlaminar fracture toughness $G_IC$ and $G_IIC$ of CFRP(carbon fiber reinforced plastic) composed of carbon fibers and epoxy resin is studied in this paper. Specimens were first processed in 25, 50, $80^{\circ}C$ flesh water and $25^{\circ}C$ sea water for various periods of time. After that, the water absorption and fracture toughness tests were performed under laboratory atmosphere. As result, the specimen processed in $80^{\circ}C$ flesh water indicates the highest misture absorbing capability, the second in $50^{\circ}C$ flesh water, the third in $25^{\circ}C$ sea water, and the specimen in $25^{\circ}C$ flesh water does the lowest. The interlaminar fracture toughness $G_IC$ increases, approaches to the maximum, and decreases as the immersion time increases. In case of interlaminar $G_IIC$, the value of the specimen processed in $80^{\circ}C$ flesh water turns out to be higher than others. In addition, the scanning electron micrographs(SEM) of fracture surfaces were also examined in order to explain the mechanism of fracture.

  • PDF

A parameter study on the pre-heat treatment for the fabrication of a large grain YBCO bulk superconductor without intermediate grinding step

  • Hong, Yi-Seul;Kim, Chan-Joong;Lee, Hee-Gyoun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • This is a parameter study for the direct fabrication of a large grain YBCO bulk superconductors using Y2O3, BaCO3 and CuO powders without any grinding step. The cracks, which have been formed due to volume contraction during calcination step, have been prevented by controlling the heating rate at 930~950 ℃. It has been observed that multi-grain growth has occurred due to the dissolution of Sm123 seed due to the retention of carbon in Ba-Cu-O melt. In order to accelerate the carbon release in prior calcination heat treatment, the reduction of pellet thickness and the drilling of artificial holes have been applied. Single-grain YBCO bulk superconductor has been successfully fabricated by stacking multiple thin slab. However, the crack formation has been rather prominent for the compact with artificial holes. The use of buffer pellet, which is supposed to act as diffusion barrier, has prevented the dissolution of Sm123 seed crystal and has led to the growth of single grain of high content of carbon containing specimen.

Inclined Edge Crack in a Piezoelectric Material Under Antiplane Loads (압전재료에 대한 면외하중하의 모서리 경사 균열)

  • Choi, Sung Ryul;Sah, Jong Youb;Jeong, Jae Tack
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.589-596
    • /
    • 2015
  • The occurrence of an inclined edge crack in transversely piezoelectric material is analyzed. Concentrated antiplane mechanical and inplane electrical loads are applied at the boundary and crack surface, respectively. The crack surfaces are assumed to be impermeable to the electric field. Using the Mellin transform with the introduction of a generalized displacement vector, the problem is formulated, and the Wiener-Hopf equation is derived. By solving the equation, the solution is obtained in a closed form. The intensity factors of the stress, the electric displacement, and the energy release rate are obtained for any crack length and inclination angle. These solutions can be used as fundamental solutions and can be superimposed to represent any arbitrary electromechanical loading.

Fracture analysis of functionally graded beams with considering material non-linearity

  • Rizov, Victor I.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.487-494
    • /
    • 2017
  • The present paper deals with a theoretical study of delamination fracture in the Crack Lap Shear (CLS) functionally graded beam configuration. The basic purpose is to analyze the fracture with taking into account the material non-linearity. The mechanical behavior of CLS was described by using a non-linear stress-strain relation. It was assumed that the material is functionally graded along the beam height. The fracture was analyzed by applying the J-integral approach. The curvature and neutral axis coordinate of CLS beam were derived in order to solve analytically the J-integral. The non-linear solution of J-integral obtained was verified by analyzing the strain energy release rate with considering material non-linearity. The effects of material gradient, crack location along the beam height and material non-linearity on fracture behavior were evaluated. The J-integral non-linear solution derived is very suitable for parametric studies of longitudinal fracture in the CLS beam. The results obtained can be used to optimize the functionally graded beam structure with respect to the fracture performance. The analytical approach developed in the present paper contributes for the understanding of delamination fracture in functionally graded beams exhibiting material non-linearity.

Fracture Mechanics Analysis of Multi-Phase Material by Finite Eelement Method (유한요소법에 의한 다상재료의 파괴역학적 해석)

  • 표창률;김영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.221-228
    • /
    • 1989
  • The objective of this paper is to develop a numerical technique for analyzing crack driving forces in multi-phase materials. The analysis was based on finite element method coupled with a virtual crack extension technique which is known as the most efficient tool in computational fracture mechanics analysis. The modified J-integral method, proposed by Miyamoto and Kikuchi for the analysis of dual-phase material was carried out by subtracting the J-values for contours surrounding each phase boundary from the J-values for overall contour. It was shown that the proposed numerical procedure, based on the modified J-integral coupled with a virtual crack extension technique, can be used as an effective numerical tool for determining crack driving forces in multi-phase materials.

Prediction of Cut Propagation Direction of Wrinkled Thin Membrane (얇은 막재에서 컷의 진전방향에 주름이 미치는 영향)

  • Kim, Young-Ah;Woo, Kyeong-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.423-430
    • /
    • 2012
  • In this paper, the effect of wrinkling on the cut propagation direction of thin membrane was studied using geometrically nonlinear shell element post-buckling analysis. In the analysis, rectangular tensile membrane configuration with a slanted center cut was considered. The cut propagation direction was predicted by maximum energy release rate method, $K_{II}$-zero method, and maximum tangential stress method. The cut propagation angle and the $J$-integral values were calculated for the wrinkled and unwrinkled cases and the results were compared. Various initial cut orientation angles were considered and the effect on the propagation direction was studied. The cut propagation paths were also predicted by virtual cut extension approach.

Fracture Toughness of Leadframe/EMC Interface (리드프레임/EMC 계면의 파괴 인성치)

  • 이호영;유진
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.6
    • /
    • pp.647-657
    • /
    • 1999
  • Due to the inherently poor adhesion strength of Cu-based leadframe/EMC (Epoxy Molding Compound) interface, popcorn cracking of thin plastic packages frequently occurs during the solder reflow process. In the present work, in order to enhance the adhesion strength of Cu-based leadframe/EMC interface, black-oxide layer was formed on the leadframe surface by chemical oxidation of leadframe, and then oxidized leadframe sheets were molded with EMC and machined to form SDCB (Sandwiched Double-Cantilever Beam) and SBN (Sandwiched Brazil-Nut) specimens. SDCB and SBN specimens were designed to measure the adhesion strength between leadframe and EMC in terms of critical energy-release rate under quasi-Mode I ($G_{IC}$ ) and mixed Mode loading ($G_{C}$ /) conditions, respectively. Results showed that black-oxide treatment of Cu-based leadframe initially introduced pebble-like X$C_2$O crystals with smooth facets on its surface, and after the full growth of $Cu_2$O layer, acicular CuO crystals were formed atop of the $Cu_2$O layer. According to the result of SDCB test, $Cu_2$O crystals on the leadframe surface did not increase ($G_{IC}$), however, acicular CuO crystals on the $Cu_2$O layer enhanced $G_{IC}$ considerably. The main reason for the adhesion improvement seems to be associated with the adhesion of CuO to EMC by mechanical interlocking mechanism. On the other hand, as the Mode II component increased, $G_{C}$ was increased, and when the phase angle was -34$^{\circ}$, crack Kinking into EMC was occured.d.

  • PDF

Numerical simulation of reinforced concrete nuclear containment under extreme loads

  • Tamayo, Jorge Luis Palomino;Awruch, Armando Miguel
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.799-823
    • /
    • 2016
  • A finite element model for the non-linear dynamic analysis of a reinforced concrete (RC) containment shell of a nuclear power plant subjected to extreme loads such as impact and earthquake is presented in this work. The impact is modeled by using an uncoupled approach in which a load function is applied at the impact zone. The earthquake load is modeled by prescribing ground accelerations at the base of the structure. The nuclear containment is discretized spatially by using 20-node brick finite elements. The concrete in compression is modeled by using a modified $Dr{\ddot{u}}cker$-Prager elasto-plastic constitutive law where strain rate effects are considered. Cracking of concrete is modeled by using a smeared cracking approach where the tension-stiffening effect is included via a strain-softening rule. A model based on fracture mechanics, using the concept of constant fracture energy release, is used to relate the strain softening effect to the element size in order to guaranty mesh independency in the numerical prediction. The reinforcing bars are represented by incorporated membrane elements with a von Mises elasto-plastic law. Two benchmarks are used to verify the numerical implementation of the present model. Results are presented graphically in terms of displacement histories and cracking patterns. Finally, the influence of the shear transfer model used for cracked concrete as well as the effect due to a base slab incorporation in the numerical modeling are analyzed.

LEFM Analysis of Patch Repaired Steel Plates by p-Version Layer Model (p-Version 적층모델을 통한 팻취 보강된 강판의 선형탄성파괴역학 해석)

  • Han, Sang-Hyun;Shin, Young-Shik;Woo, Kwang-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.487-492
    • /
    • 2007
  • The enhancement of the service life of damaged or cracked structures is a major issue for researchers and engineers. The hierarchical void element with the integrals of Legend polynomials is used to characterize the fracture behavior of unpatched crack as well as repaired crack with bonded composite patches by computing the stress intensity factors and stress contours at the crack tip. The numerical approach is based on the v-version degenerate shell element including the theory of anisotropic laminated composites. Since the equivalent single layer approach is adopted in this study, the proposed element is necessary to represent a discontinuous crack part as a continuum body with zero stiffness of materials. Thus the aspect ratio of this element to represent the crack should be extremely slender. The sensitivity of numerical solution with respect to energy release rate, displacement and stress has been tested to show the robustness of hierarchical void element as the aspect ratio is increased up to 2000. The stiffness derivative method and displacement extrapolation method have been applied to calculate the stress intensity factors of Mode I problem.

  • PDF