• Title/Summary/Keyword: Energy release model

Search Result 234, Processing Time 0.027 seconds

A study of a combined release model using perturbation solutions (섭동해를 이용한 혼합 누출에 관한 연구)

  • Kim, Myungbae
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.41-48
    • /
    • 2014
  • Leak of liquid has been categorized conventionally into instantaneous release and continuous release. In this study, the spread of cryogenic liquid due to limited period of release is investigated for the first time to establish a new classification method with recognizing the irrationality of the conventional one. Such physical phenomena are governed by simultaneous equations concerning volume, radius and height of pool of the cryogenic liquid, and major parameters are evaporation rate per unit area, time of release, and spill quantity. The simultaneous governing equations is decoupled to get efficiently perturbation solutions. As the results, for the same spill quantity, in view of release model, combined release model that consists of continuous and consecutive instantaneous model is necessary with small time of release, while continuous model is solely required with large time of release. Also, the combined model is necessary for small spill quantity with the same time of release. These two regimes of release are clearly distinguished using the perturbation solution to provide a clear basis for the new classification of release models.

Core Release Model Evaluation in the ISAAC Code for PHWR

  • Song Yong-Mann;Park Soo-Yong;Kim Dong-Ha;Kim Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.36-46
    • /
    • 2004
  • The ISAAC fission product release calculation is based on detailed FPRAT models developed by Jaycor. For volatile fission product release calculations, either the Cubicciotti steam oxidation correlation or the NUREG-0772 correlation is used. In this study, evaluation is carried out for these volatile fission product release models. As a result, in the case of early release, the IDCOR model with an in-vessel Te release option shows the most conservative results and for the late release case, the NUREG-0772 model shows the most conservative results. Considering both early and late release, the IDCOR model with an in-vessel Te bound option is evaluated to show mitigated conservative results. In addition, a sensitivity study on detailed core nodalization is performed. In the study, 380 horizontal fuel channels in the Wolsong plant are nodalized into 12 (6 channels per loop, $3{\times}3$ Core Pass) representative channels and detailed by 16/20/24 channels. For reference accidents, LOAH and large LOCA are selected as representing high and low pressure sequences, respectively. According to the results, the original 12 channel approach with $3{\times}3$ core passes is evaluated to be sufficient as an optimal scheme.

Estimation of Tritium Concentration in Groundwater around the Nuclear Power Plants Using a Dynamic Compartment Model

  • Choi, Heui-Joo;Lee, Han-Soo;Kang, Hee-Suk;Choi, Yong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.239-245
    • /
    • 2003
  • Every nuclear power plant measured concentrations of tritium in groundwater and surface water around the plants periodically. It was not easy to predict the tritium concentration only with these measurement data in case of various release scenarios. KAERI developed a new approach to find the relationship between the tritium release rate and tritium concentration in the environment. The approach was based upon a dynamic compartment model. In this paper the dynamic compartment model was modified to predict the tritium behavior more accurately. The mechanisms considered for the transfer of tritium between the compartments were evaporation, groundwater flow, infiltration, runoff, and hydrodynamic dispersion. Time dependent source terms of the compartment model were introduced to refine the release scenarios. Also, transfer coefficients between the compartments were obtained using realistic geographical data. In order to illustrate the model various release scenarios were developed, and the change of tritium concentration in groundwater and surface water around the nuclear power plants was estimated.

On-the-fly energy release per fission model in STREAM with explicit neutron and photon heating

  • Nhan Nguyen Trong Mai;Woonghee Lee;Kyeongwon Kim;Bamidele Ebiwonjumi;Wonkyeong Kim;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1071-1083
    • /
    • 2023
  • The on-the-fly energy release per fission (OTFK) model is implemented in STREAM to continuously update the Kappa values during the depletion calculation. The explicit neutron and photon energy distribution, which has not been considered in previous STREAM versions, is incorporated into the existing on-the-fly model. The impacts of the modified OTFK model with explicit neutron and photon heating in STREAM on the power distribution, fuel temperature, and other core parameters during depletion with feedback calculations are studied using several problems from the VERA benchmark suit. Overall, the explicit heating calculation provides a better power map for the feedback calculations particularly when strong gamma emitters are present. Generally, the fuel temperature decreases when neutron and photon heating is employed because fission neutrons and gamma rays are transported away from their points of generation. This energy release model in STREAM indicates that gamma energy accounts for approximately 9.5%-10% of the total energy released, and approximately 2.4%-2.6% of the total energy released will be deposited in the coolant for the VERA 5, NuScale, and Yonggwang Unit 3 2D cores.

Effect of Frictional Resistance Force on a Liquid Pool Spreading Model with Continuous and Instantaneous Release (마찰저항이 연속누출과 순간누출을 가지는 액체 풀의 확산에 미치는 영향에 대한 해석적 연구)

  • Kim, Tae Hoon;Choi, Byung-Il;Kim, Myungbae;Do, Kyu Hyung;Han, Yong-Shik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.487-494
    • /
    • 2013
  • In this study, solutions for a liquid pool spreading model with continuous and instantaneous release are discussed based on the model used in the FERC's report. The effects of the release time on the liquid pool volume and radius are investigated for the continuous release. For the continuous release with the frictional resistance force in the liquid pool spreading model, the vaporization time decreases as the release time increases. On the other hand, for the continuous release without the frictional resistance force in the liquid pool spreading model, the vaporization time increases as the release time increases. These phenomena are deeply related to the pool radius. In addition, the effects of the initial pool radius for the instantaneous release in the liquid pool spreading model are discussed. For the case with the frictional resistance force in the liquid pool spreading model, as reducing release time in the model with the frictional resistance force for the continuous release, the solution for a continuous release approaches to that for an instantaneous release. On the contrary to this, the pool volume and radius for the instantaneous release without the frictional resistance force are totally different from those for the continuous release without the frictional resistance force.

Study of stability and evolution indexes of gobs under unloading effect in the deep mines

  • Fu, Jianxin;Song, Wei-Dong;Tan, Yu-Ye
    • Geomechanics and Engineering
    • /
    • v.14 no.5
    • /
    • pp.439-451
    • /
    • 2018
  • The stress path characteristics of surrounding rock in the formation of gob were analysed and the unloading was solved. Taking Chengchao Iron Mine as the engineering background, the model for analysing the instability of deep gob was established based on the mechanism of stress relief in deep mining. The energy evolution law was investigated by introducing the local energy release rate index (LERR), and the energy criterion of instability of surrounding rock was established based on the cusp catastrophe theory. The results showed that the evolution equation of the local energy release energy of the surrounding rock was quartic function with one unknown and the release rate increased gradually during the mining. The calculation results showed that the gob was stable. The LERR per unit volume of the bottom structure was relatively smaller, which mean the stability was better. The LERR distribution showed that there was main energy release in the horizontal direction and energy concentration in the vertical direction which meet the characteristics of deep mining. In summary, this model could effectively calculate the stability of surrounding rock in the formation of gob. The LERR could reflect the dynamic process of energy release, transfer and dissipation which provided an important reference for the study of the stability of deep mined out area.

A Study on the Energy Release Rate of Delaminated Composite Laminates (층간분리된 복합적층판의 에너지 방출률에 관한 연구)

  • Cheong, S.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.97-107
    • /
    • 1995
  • Global postbuckling analysis is accomplished for one-dimensional and two-dimensional delaminations. A new finite element model, which can be used to model the global postbuckling analysis of one-dimensional and two-dimensional delaminations, is presented. In order to calculate the strain energy release rate, geometrically nonlinear analysis is accomplished, and the incremental crack closure technique is introduced. To check the effectiveness of the finite element models and the incremental crack closure technique, the simplified closed-form sloution for a through-the-width delamination with plane strain condition is derived and compared with the finite element result. The finite element results show good agreement with the closed-foul1 solutions. The present method was extended to calculate the strain energy release rate for two-dimensional delamination. For a symmetric circular delamination, the strain energy release rate shows great variation along the delamination front. and the delamination growth appears to occur perpendicular to the loading direction.

  • PDF

Experimental Determination of Concrete Fracture Properties with Modified S-FPZ Model

  • Yon, Jung-Heum;Kim, Tai-Hoon
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.213-219
    • /
    • 2006
  • Modified singular fracture process zone(S-FPZ) model is proposed in this paper to determine a fracture criterion for continuous crack propagation in concrete. The investigated fracture properties of the proposed fracture model are strain energy release rate at a micro-crack tip and the relationship between crack closure stress(CCS) and crack opening displacement(COD) in the FPZ. The proposed model can simulate the actual fracture energy of experimental results fairly well. The results of the experimental data analysis show that specimen geometry and loading condition did not affect the CCS-COD relation. However, the strain energy release rate is a function of not only specimen geometry but also crack extension. The strain energy release rate remained constantly at the minimum value up to the crack extension of 25 mm, and then it increased linearly to the maximum value. The maximum fracture criterion occurred at the peak load for specimens of large size. The fracture criterion remained at the maximum value after the peak load. The variation of the fracture criterion is caused by micro-cracking and micro-crack localization. The fracture criterion of strain energy release rate can simply be the size effect of concrete fracture, and it can be used to quantify the micro-cracking and micro-crack localizing behavior of concrete.

Analysis of the strain energy release rate for time-dependent delamination in multilayered beams with creep

  • Rizov, Victor I.
    • Advances in materials Research
    • /
    • v.11 no.1
    • /
    • pp.41-57
    • /
    • 2022
  • This paper is focused on delamination analysis of a multilayered inhomogeneous viscoelastic beam subjected to linear creep under constant applied stress. The viscoelastic model that is used to treat the creep consists of consecutively connected units. Each unit consists of one spring and two dashpots. The number of units in the model is arbitrary. The modulus of elasticity of the spring in each unit changes with time. Besides, the modulii of elasticity and the coefficients of viscosity change continuously along the thickness, width and length in each layer since the material is continuously inhomogeneous in each layer of the beam. A time-dependent solution to the strain energy release rate for the delamination is derived. A time-dependent solution to the J-integral is derived too. A parametric analysis of the strain energy release rate is carried-out by applying the solution derived. The influence of various factors such as creep, material inhomogeneity, the change of the modulii of elasticity with time and the number of units in the viscoelastic model on the strain energy release rate are clarified.

Dynamic Fracture Properties of Modified S-FPZ Model for Concrete

  • Yon, Jung-Heum;Seo, Min-Kuk
    • International Journal of Concrete Structures and Materials
    • /
    • v.19 no.1E
    • /
    • pp.25-32
    • /
    • 2007
  • The fracture energy evaluated from the previous experimental results can be simulated by using the modified singular fracture process zone (S-FPZ) model. The fracture model has two fracture properties of strain energy release rate for crack extension and crack close stress versus crack width relationship $f_{ccs}(w)$ for fracture process zone (FPZ) development. The $f_{ccs}(w)$ relationship is not sensitive to specimen geometry and crack velocity. The fracture energy rate in the FPZ increases linearly with crack extension until the FPZ is fully developed. The fracture criterion of the strain energy release rate depends on specimen geometry and crack velocity as a function of crack extension. The behaviors of micro-cracking, micro-crack localization and full development of the FPZ in concrete can be explained theoretically with the variation of strain energy release rate with crack extension.