• 제목/요약/키워드: Energy recycling

Search Result 999, Processing Time 0.026 seconds

A Study on Medical Waste Generation Analysis during Outbreak of Massive Infectious Diseases (대규모 감염병 발병에 따른 의료폐기물 발생량 예측에 관한 연구)

  • Sang-Min Kim;Jin-Kyu Park;In-Beom Ko;Byung-Sun Lee;Sang-Ryong Shin;Nam-Hoon Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.4
    • /
    • pp.29-39
    • /
    • 2023
  • In this study, an analysis of medical waste generation characteristics was conducted, differentiating between ordinary situation and the outbreaks of massive infectious diseases. During ordinary situation, prediction models for medical waste quantities by type, general medical waste(G-MW), hazardous medical waste(H-MW), infectious medical waste(I-MW), were established through regression analysis, with all significance values (p) being <0.0001, indicating statistical significance. The determination coefficient(R2) values for prediction models of each category were analyzed as follows : I-MW(R2=0.9943) > G-MW(R2=0.9817) > H-MW(R2=0.9310). Additionally, factors such as GDP(G-MW), the number of medical institutions (H-MW), and the elderly population ratio(I-MW), utilized as influencing factors and consistent with previous literature, showed high correlations. The total MW generation, evaluated by combining each model, had an MAE of 2,615 and RMSE of 3,353. This indicated accuracy levels similar to the medical waste models of H-MW(2,491, 2,890) and I-MW(2,291, 3,267). Due to limitations in accurately estimating the quantity of medical waste during the rapid and outbreaks of massive infectious diseases, the generation unit of I-MW was derived to analyze its characteristics. During the early unstable stage of infectious disease outbreaks, the generation unit was 8.74 kg/capita·day, 2.69 kg/capita·day during the stable stage, and an average of 0.08 kg/capita·day during the reduction stage. Correlation analysis between generation unit of I-MW and lethality rates showed +0.99 in the unstable stage, +0.52 in the stable stage, and +0.96 in the reduction period, demonstrating a very high positive correlation of +0.95 or higher throughout the entire outbreaks of massive infectious diseases. The results derived from this study are expected to play a useful role in establishing an effective medical waste management system in the field of health care.

Characteristic evaluation of anaerobic co-digestion using desulfurization sludge and primary sludge (탈황슬러지 및 생슬러지를 이용한 혐기성 병합소화 특성평가)

  • Seulki Koo;Woojin Chung;Soonwoong Chang;Myoungsoo Park
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.4
    • /
    • pp.51-58
    • /
    • 2023
  • In this study, anaerobic co-digestion was carried out using desulfurization sludge and sewage sludge (primary sludge) to evaluate the effects of sulfur compounds in anaerobic digestion. The experiment was carried out in the form of a batch test using 500 mL duran bottle, and the mixing ratio of the feedstock was selected based on the ratio of COD/SO4. As a result of the experiment, it was confirmed that the amount of biogas generated and the yield decreased at the mixing ratio of COD/SO4 20 or less. In particular, below COD/SO4 10, it was lower than seed (283.5 mL) which was set without feedstock to correct biogas generated by itself from seed sludge. Methane yield tended to decrease from a ratio of COD/SO4 20 or less to 0.135 m3/kg VS compared to 0.396 m3/kg VS of COD/SO4 50. In addition, compared to 0.0097 m3/kg VS of hydrogen sulfide yield from COD/SO4 50, the ratio of COD/SO4 20 increased sharply to 0.0223 m3/kg VS, and in particular, the highest result was 0.0855 m3/kg VS in COD/SO4 10. Based on these results, it is judged that the effect of sulfide in anaerobic digestion can have an adverse effect if the COD/SO4 ratio decreases to less than 20.

Initial Change of Environmental factors at Artificial Tidal Flat Constructed Using Ocean Dredged Sediment (해양 준설토를 이용한 인공염습지 현장시험구 조성 후 초기 환경변화)

  • Park, So-Young;Lee, In-Cheol;Yi, Byung-Ho;Lee, Ja-Yeon;Yi, Yong-Min;Sung, Ki-June
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.2
    • /
    • pp.63-69
    • /
    • 2008
  • As a basic study on the creation of artificial tidal flats using dredged sediments, the pilot-scale artificial tidal flats with 4 different mixing ratio of ocean dredged sediment were constructed in Nakdong river estuary. The phragmites australis was transplanted from the adjacent phragmites australis community after construction, and then the survival and growth rate of the planted phragmites australis were measured. Also the changes of soil chemical oxygen demand (COD), ignition loss (IL), and the heterotrophic microbial numbers were monitored. The survival rate of the planted phragmites australis decreased as the mixing ratio of dredged sediment increased but there was little difference of length and diameter of the shoots. 30% of COD and 9% of IL in the tidal flat with 100% dredged sediment decreased after 202 day, however, fluctuations of COD and IL concentrations were also observed possibly due to the open system. It was suggested that the construction of tidal flats using ocean dredged sediment and biological remediation of contaminated ocean dredged sediment can be possible considering the growth rate of transplanted phragmites australis, decrease of organic matter and increased heterotrophic microbial number in the pilot plant with 100% dredged sediment. However, the continuous monitoring on the vegetation and various environmental factors in the artificial tidal flat should be necessary to evaluate the success of creation of artificial flats using dredged sediments.

  • PDF

Study on Efficient Carbonizing Conditions When Carbonizing Fish Offal (어류폐기물의 탄화처리시 효율적 탄화조건에 관한 연구)

  • Jeong, Byung Gon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.4
    • /
    • pp.268-273
    • /
    • 2014
  • Experiments on carbonization were conducted using fish offal generated from fish market for the purpose of resource recycling. Elemental composition of fish offal and effect of carbonation temperature on the overall yield were investigated. Carbon and hydrogen contents of fish offal were 51.1% and 7.6%, respectively in view of elemental composition. Particularly, nitrogen and sulfur contents were as high as 9.8% and 1.0%, respectively. These values suggests that odor problem of fish offal can be serious. Comparing elemental composition of fish offal with other waste materials, it is thought that carbon and hydrogen contents are considerably high. These implies that thermal disposal will be the best option for final disposal method of fish offal. As a results of carbonization experiments on Mackerel, Hairtail, Croaker and mixed sample of Mackerel, Hairtail and Croaker, carbonization patterns were quite similar irrespective of fish species. Carbonization yield was varied significantly depending on carbonization temperature at the carbonization time of 5 minutes and 10 minutes. When the carbonization time was maintained longer than 30 minutes, yield variation depending on time variation at each temperature was insignificant. Thus, it can be concluded that effect of carbonization time on overall yield was minor when the carbonization time was maintained longer than 30 minutes. Primary vaporization in carbonization conducted at the temperature of $400^{\circ}C$ was minor. Thus, difference of yield between temperature of $500^{\circ}C$ and $400^{\circ}C$ was appeared greatly. It can be concluded that yield difference depending on carbonization temperature can be neglected if the carbonizing temperature exceed $600^{\circ}C$ and carbonizing time exceed 10 minutes at the same time.

Feasibility Study of Applying EMMC Process to Recirculation Water Treatment System in High Density Seawater Aquaculture Farm through Laboratory Scale Reactor Operation (실험실규모 반응조 운전을 통한 고밀도 해산어 양식장 순환수 처리공정으로서 EMMC공정의 적용 가능성 연구)

  • Jeong Byung Gon;Kim Byung Hyo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.3
    • /
    • pp.116-121
    • /
    • 2004
  • Treatability tests were conducted to study the feasibility of EMMC process as a recycling-water treatment system in high density seawater aquaculture farm. To study the effect of organic and ammonia nitrogen loading rate on system performance, hydraulic retention time was reduced gradually from 12hr to 10min. The conclusions are can be summarized as follows. When the system HRT was reduced from 12hr to 2hr gradually, there was little noticeable change(reduction) in ammonia nitrogen removal efficiencies. However, removal efficiencies were decreased dramatically when the system was operated under the HRT of less than 2hr. In case of organics(COD), there was no dramatic change in removal efficiencies depending on HRT reduction. COD removal efficiencies were maintained successfully higher than 9% when the system was operated at tile HRT of 10 min. System performances depending on media packing ratio in the reactors were also evaluated. There were little differences in each reactor performances depending on media packing ratio in reactor when the reactors were operated under the HRT of longer than 1hr. However, differences in reactor performances were considerably evident when the reactors were operated under the HRT of shorter than 1hr. When comparing reactor performance among 25%, 50%,7 5% packed reactor, it can be judged that media packing ratio more than 50% plays no significant role in increasing reactor performance. For this reason, packing the media less than 50% is more reasonable way in view of economic. Such a tendency shown in COD removal efficiencies well agreed with the variation of ammonia-nitrogen removal efficiencies according to the media packing ratio in reactors at each HRT. Difference in effluent ammonia-nitrogen concentration between 50% media packing reactor and 75% media packing reactor was negligible. When comparing with the results of 25% packing reactor, difference was not so great.

  • PDF

A Study on the Sustainable Fashion Design by Organic Cotton (오가닉 코튼[Organic Cotton]을 이용한 지속가능한 패션디자인)

  • Kim, Soo-Hyun;Lee, Jae-Jung;Chung, Hyun-Sook
    • Journal of the Korean Society of Costume
    • /
    • v.57 no.2 s.111
    • /
    • pp.115-131
    • /
    • 2007
  • By the turn of the century, our society has been gradually more interested in environmental problems than any other time. Ecological change spurred by industrial pollution is occurring beyond the borders of nations, and has emerged as a global issue. Such change is resulting in exhaustion of natural resources and energy, and serious climatic change. In this study, main focus regarding the process of the fashion product design system was placed on the sustainable fashion design of organic cotton as a positive and alternative suggestion. It is expected that the results of this study contribute to the fashion design planning not only for future generation but also for the present time. This study researched on brands that produced their fashion products using organic cotton. The following cases proved to possess sustainability in their product system. The results of this study can be summarized as follows: Firstly, sustainable design in organic cotton products has been a progressive ere-design in 2000s. It is mainly focus concerned with recycling and re-use of materials to protect environment. It is not chemical dependant and takes a particular care in eliminating waste water and energy in the dyeing process. It is an environmentally sustainable design better than all the other design processes. Secondly, it is a design that cares for the common good of society and the global system of fair trading. The fair trading of organic cotton products induced a change in the structure of production system, while defending human rights. It also gave benefits by promoting development in local society and progress in traditional skills. Not to mention that it contributed to building up the concept of transparency in the global economic system. Lastly, the brands emphasize their social responsibility and management ethics to observe environmental policy which is established to protect our nature and people. Their public information reminds customers of the importance of protecting the environment from diverse pollution. Moreover, they hold social events to promote public awareness for environmental Issues. This study dealt only with the organic cotton, a small subset of the subject of sustainable design. It can be extended and applied to various other sustainable fashion design as a solution for global environmental issues.

A Study of Milk Waste Recycling as an Energy Source and Reduction of Pollution by Anaerobic Digestion (혐기성 소화를 통한 유가공 폐기물의 에너지원으로의 재활용과 오염 감소 방안에 관한 연구)

  • Lim, Samuel;Lim, Hyun-Ji;Jung, Kook-Jin
    • Journal of Dairy Science and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • We confirmed methane production and reduction of pollution during anaerobic digestion of milk waste and analyzed the economic potential of using milk waste as a renewable energy source. The milk waste sludge was obtained from the Pasteur milk factory and processed by anaerobic digestion to produce methane. The methane production from two completely mixed tank reactors with an effective capacity of 6 ${\ell}$, 15 days of hydraulic retention time (HRT), and a mid-temperature of $35^{\circ}C$ averaged 4.11 ${\ell}$/day. The total chemical oxygen demand (TCOD) during production decreased from an initial 31,416 mg/${\ell}$ to 13,500 mg/${\ell}$, showing a maximum TCOD removal efficiency of 60%. When HRT was reduced to 12 days, methane production increased by 44% under a high-temperature condition of $55^{\circ}C$. An economic analysis based on these results was applied to a Korean milk factory of typical size and demonstrated that the installation of an anaerobic digester could provide sufficient economic profit.

  • PDF

Physical, Morphological, and Chemical Analysis of Fly Ash Generated from the Coal Fired Power Plant (석탄 화력발전소에서 발생되는 석탄회 특성과 형성 분석에 관한 연구)

  • 이정언;이재근
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.146-156
    • /
    • 1998
  • Fly ash produced in coal combustion is a fine-grained material consisting mostly of spherical, glassy, and porous particles. A physical, morphological, and chemical characteristic of fly ash has been analyzed. This study may contribute to the data base of domestic fly ash, the improvement of combustion efficiency, ash recycling and ash collection in the electrostatic precipitator. The physical property of fly ash is determined using a particle counter for the measurement of ash size distribution and gravimeter. Morphological characteristic of fly ash is performed using a scanning electron micrograph and an optical microscope. The chemical components of fly ash are determined using an inductively coupled plasma emission spectrometry (ICP). The distribution of fly ash size was ranged from 15 to 25 $\mu$m in mass median diameter. Exposure conditions of flue gas temperature and duration within the combustion zone of the boiler played an important role on the morphological properties of the fly ash such as shape, relative opacity, coloration, cenosphere and plerosphere. The spherical fly ash might be generated at the condition of complete combustion. The size of fly ash was found to be increased the with particle-particle interaction of agglomeration and coagulation. Fly ash consisted of $SiO_2\;Al_2O_3\;and\;Fe_2O_3$ with 85% and carbon with 3~10% of total mass.

  • PDF

Analysis of Consumption of Homemade Organically Processed Food Analysis of The Carbon Emission Reduction Effect from No-Tillage in Pepper (Capsicum annuum L.) Cultivation (고추의 무경운 재배에 따른 탄소저감효과 분석)

  • Lee, Gil-Zae;Choi, Yoon-Sil;Yang, Seung-Koo;Lee, Jin-Hong;Yoon, Sung-Yee
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.4
    • /
    • pp.503-518
    • /
    • 2012
  • Korean type of no-tillage cultivation method which was applied on this study used the ridge and the furrow and constantly recycling them as it was suitable for Korea's weather and farming conditions. This no-tillage cultivation was reported to have little negative impact such as reduction of production (Kwon et al., 1997). In addition, it was found to have a lot of benefits as it requires less agro-materials and energy costs as well as shortened working hours because tillage operation is not needed. (Yang et al., 2012). According to an analysis, no-tillage cultivation can reduce greenhouse gas emissions by $344.7kgCO^2$ (58%) in every 10a ($1,000m^2$) compared to ordinary pepper farming technique (Korea averages). Direct-indirect reduction effects from using fertilizer and using less amount of energy were 92% and 44% respectively both of which can be considered very high. Besides the direct effects of no-tillage cultivation, soil management using no-tillage technique raises carbon sequestration effect on soil as time goes on (West & Marland, 2002), that is why the technique is expected to have constant carbon emission reduction effect. For theses reasons, distribution and expansion of Korean type no-tillage cultivation are expected to play a role as major agro-green technologies for achieving our goal of reducing greenhouse gas emissions in agricultural sector.

External Cost Assessment for Nuclear Fuel Cycle (핵연료주기 외부비용 평가)

  • Park, Byung Heung;Ko, Won Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.243-251
    • /
    • 2015
  • Nuclear power is currently the second largest power supply method in Korea and the number of nuclear power plants are planned to be increased as well. However, clear management policy for spent fuels generated from nuclear power plants has not yet been established. The back-end fuel cycle, associated with nuclear material flow after nuclear reactors is a collection of technologies designed for the spent fuel management and the spent fuel management policy is closely related with the selection of a nuclear fuel cycle. Cost is an important consideration in selection of a nuclear fuel cycle and should be determined by adding external cost to private cost. Unlike the private cost, which is a direct cost, studies on the external cost are focused on nuclear reactors and not at the nuclear fuel cycle. In this research, external cost indicators applicable to nuclear fuel cycle were derived and quantified. OT (once through), DUPIC (Direct Use of PWR SF in CANDU), PWR-MOX (PWR PUREX reprocessing), and Pyro-SFR (SFR recycling with pyroprocessing) were selected as nuclear fuel cycles which could be considered for estimating external cost in Korea. Energy supply security cost, accident risk cost, and acceptance cost were defined as external cost according to precedent and estimated after analyzing approaches which have been adopted for estimating external costs on nuclear power generation.