• 제목/요약/키워드: Energy recycling

검색결과 1,006건 처리시간 0.042초

Transient Receptor Potential Cation Channel V1 (TRPV1) Is Degraded by Starvation- and Glucocorticoid-Mediated Autophagy

  • Ahn, Seyoung;Park, Jungyun;An, Inkyung;Jung, Sung Jun;Hwang, Jungwook
    • Molecules and Cells
    • /
    • 제37권3호
    • /
    • pp.257-263
    • /
    • 2014
  • A mammalian cell renovates itself by autophagy, a process through which cellular components are recycled to produce energy and maintain homeostasis. Recently, the abundance of gap junction proteins was shown to be regulated by autophagy during starvation conditions, suggesting that transmembrane proteins are also regulated by autophagy. Transient receptor potential vanilloid type 1 (TRPV1), an ion channel localized to the plasma membrane and endoplasmic reticulum (ER), is a sensory transducer that is activated by a wide variety of exogenous and endogenous physical and chemical stimuli. Intriguingly, the abundance of cellular TRPV1 can change dynamically under pathological conditions. However, the mechanisms by which the protein levels of TRPV1 are regulated have not yet been explored. Therefore, we investigated the mechanisms of TRPV1 recycling using HeLa cells constitutively expressing TRPV1. Endogenous TRPV1 was degraded in starvation conditions; this degradation was blocked by chloroquine (CLQ), 3MA, or downregulation of Atg7. Interestingly, a glucocorticoid (cortisol) was capable of inducing autophagy in HeLa cells. Cortisol increased cellular conversion of LC3-I to LC-3II, leading autophagy and resulting in TRPV1 degradation, which was similarly inhibited by treatment with CLQ, 3MA, or downregulation of Atg7. Furthermore, cortisol treatment induced the colocalization of GFP-LC3 with endogenous TRPV1. Cumulatively, these observations provide evidence that degradation of TRPV1 is mediated by autophagy, and that this pathway can be enhanced by cortisol.

A Study on the Environmental Awareness and Attitude of Elementary School Students (초등학교 학생들의 환경인식과 태도에 관한 연구)

  • 김인호;주신하;안동만
    • Hwankyungkyoyuk
    • /
    • 제13권1호
    • /
    • pp.122-132
    • /
    • 2000
  • The purpose of this study is to survey and analyze the environmental awareness and attitude of elementary school students, adapting the CHEAKS(Children's Environmental Attitude and Knowledge Scale) for Korean elementary students, which is the valid-tested tools for children's environmental awareness and altitude. The subjects are 580 students from 6 elementary schools. The differences of the environmental attitude are surveyed and analyzed by environmental education activities, such as environmental activities in school and “the school forest movement”, and environmental awareness and concern. The results are as followings: First, the subjects replied that the environmental problems are very serious, such as atmospheric pollution(37.6%), water pollution(22.2%) and food waste(16.3%), but they are relatively optimistic of the future environment. Second, the verbal commitment subdomain and the affect domain are evaluated higher than the actual commitment subdomain, and the environmental issues of water, energy and recycling are considered more importantly than other issues such as environmental generals, pollutions and animals. Third, the grade and the sex have little effect on the environmental attitude, but the environmental education activities have great positive effect, such as the experience of environmental camping, the education of saving resources, waste separation and the experience of raising plants and flowers. Fourth, the students with high awareness and concern about the environmental problems have high environmental attitude. Especially, the awareness and concern on the flowers and plants have very strong correlation with environmental attitude, regardless of the subdomains. Finally, the students from the school participating “the school forest movement” have relatively positive environmental attitude. Particularly, the participation of students and the positive approach of the school have positively great influence on the students' environmental attitude in all of 3 subdomains and 6 environmental issues.

  • PDF

Life Cycle Assessment of Rural Community Buildings Using OpenLCATM DB (OpenLCATM DB를 이용한 농촌 공동체 건축물 전과정평가)

  • Kim, Yongmin;Lee, Byungjoon;Yoon, Seongsoo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제63권3호
    • /
    • pp.97-105
    • /
    • 2021
  • Most of the rural development projects for the welfare of residents are mainly new construction and remodeling projects for community buildings such as village halls and senior citizens. However, in the case of the construction industry, it has been studied that 23% of the total carbon dioxide emissions generated in Korea are generated in the building-related sector. (GGIC, 2015) In order to reduce the emission of environmental pollutants resulting from construction of rural community buildings, there is a need to establish a system for rural buildings by predicting the environmental impact. As a result of this study, the emissions of air pollutants from buildings in rural communities were analyzed by dividing into seven stages: material production, construction, operation, maintenance, demolition, recycling, and transportation activities related to disposal. As a result, 12 kg of carbon dioxide (CO), 0.06 kg of carbon monoxide (CO), 0.02 kg of methane (CH), 0.04 kg of nitrogen oxides (NO), 0.02 kg of sulfurous acid gas (SO), and non-methane volatile organics per 1m of buildings in rural communities It was analyzed that 0.02 kg of compound (NMVOC) and 0.00011 kg of nitrous oxide (NO) were released. This study proved that environmentally friendly design is possible with a quantitative methodology for the comparison of operating energy and air pollutant emissions through the design specification change based on the statement of the rural community building. It is considered that it can function as basic data for further research by collecting major structural changes and materials of rural community buildings.

Development on the Methodology of CDM Projects in the SF6 Recovery and Recycling of Electrical Equipment (전력설비에서의 SF6 회수 및 재활용 CDM 방법론 개발)

  • Pyo, Jeong-Gwan;Sa, Jae-Hwan;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • 제2권3호
    • /
    • pp.143-159
    • /
    • 2011
  • Projects applying the CDM methodology AM0035 of the $SF_6$ Emission Reductions in Electrical Grids should provide direct monitoring of all the key parameters that are related to estimation of baseline and project emissions including detailed explanations of key operating conditions and procedures, and an explanation addressing uncertainty as the result of EB meeting 41. Through this study, recovery ratio during maintenance, purity of $SF_6$ before and after disposal, replacing, loss rate of $SF_6$ before and after reclamation, leakage emission from electricity consumption and fossil fuel combustion, considered conservatively the key parameter of various monitoring. Consequently, confirmed the reduction in the amount of reduction due to the baseline emission decrease, project emission increase.

Ag2Se Modified TiO2 Heterojunction with Enhanced Visible-Light Photocatalytic Performance

  • Zhu, Lei;Tang, Jia-Yao;Fan, Jia-Yi;Sun, Chen;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • 제31권12호
    • /
    • pp.657-664
    • /
    • 2021
  • To build a highly active photocatalytic system with high efficiency and low cast of TiO2, we report a facile hydrothermal technique to synthesize Ag2Se-nanoparticle-modified TiO2 composites. The physical characteristics of these samples are analyzed by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis, transmission electron microscopy and BET analysis. The XRD and TEM results show us that TiO2 is coupled with small sized Ag2Se nanoplate, which has an average grain size of about 30 nm in diameter. The agglomeration of Ag2Se nanoparticles is improved by the hydrothermal process, with dispersion improvement of the Ag2Se@TiO2 nanocomposite. Texbrite BA-L is selected as a simulated dye to study the photodegradation behavior of as-prepared samples under visible light radiation. A significant enhancement of about two times the photodegradation rate is observed for the Ag2Se@TiO2 nanocomposite compared with the control sample P25 and as-prepared TiO2. Long-term stability of Ag2Se@TiO2 is observed via ten iterations of recycling experiments under visible light irradiation.

Development of a Sustainable Waste Paint Treatment Process for Waste Resource Recovery Improvement (폐기물 자원회수 향상을 위한 친환경 폐페인트 처리프로세스 개발)

  • Moon, Jongwook;Hwang, Suckho;Kim, Daeyoung
    • Korean Journal of Construction Engineering and Management
    • /
    • 제23권1호
    • /
    • pp.73-82
    • /
    • 2022
  • Waste paint, one of the specified wastes in Korea, is currently treated entirely by incineration treatment method, and is hardly recycled compared to other wastes. Incineration treatment method also causes environmental problems such as air pollution. Thus, this study breaks away from the existing incineration treatment method of waste paint and switch to a method of pretreatment operation through evaporation, condensation, and thermal decomposition by temperature control. and then proposes a sustainable waste paint treatment process that can be recycled as an alternative energy heat source. If a new method of disposing of waste paint and technology for recycling are developed and disseminated, it is expected that the effect will be large from an economic and environmental point of view.

Preparation and Electrochemical Characterization of Porous Carbon Foam from Waste Floral Foam for Supercapacitors (폐 플로랄 폼을 이용한 슈퍼커패시터용 다공성 탄소 폼 제조 및 전기화학 성능 평가)

  • Lee, Byoung-Min;Park, Jin-Ju;Park, Sang-Won;Yun, Je Moon;Choi, Jae-Hak
    • Korean Journal of Materials Research
    • /
    • 제32권9호
    • /
    • pp.369-378
    • /
    • 2022
  • The recycling of solid waste materials to fabricate carbon-based electrode materials is of great interest for low-cost green supercapacitors. In this study, porous carbon foam (PCF) was prepared from waste floral foam (WFF) as an electrode material for supercapacitors. WFF was directly carbonized at various temperatures of 600, 800, and 1,000 ℃ under an inert atmosphere. The WFF-derived PCF (C-WFF) was found to have a specific surface area of 458.99 m2/g with multi-modal pore structures. The supercapacitive behavior of the prepared C-WFF was evaluated using a three-electrode system in a 6 M KOH aqueous electrolyte. As a result, the prepared C-WFF as an active material showed a high specific capacitance of 206 F/g at 1 A/g, a rate capability of 36.4 % at 20 A/g, a specific power density of 2,500 W/kg at an energy density of 2.68 Wh/kg, and a cycle stability of 99.96 % at 20 A/g after 10,000 cycles. These results indicate that the C-WFF prepared from WFF could be a promising candidate as an electrode material for high-performance green supercapacitors.

Recycled Clothes and Its Characters Impact on Consumers' Consumption (재활용 의류와 그 특성이 소비자의 소비에 미치는 영향)

  • He, Luyao;Pan, Young Hwan
    • Journal of the Korea Convergence Society
    • /
    • 제12권7호
    • /
    • pp.159-167
    • /
    • 2021
  • The increasingly severe environmental problems such as resource depletion and ecological damage, and consumers' concern for sustainable fashion, make the fashion industry chain develop towards green energy saving. The purpose of this study is to explore the attitude and consumption psychology of specific groups towards sustainable fashion consumption, as well as their specific views and attitudes towards recycled textiles or fabrics for re-manufacturing clothing. This paper attempts to understand how the characteristics of recycled clothing affect consumer. Based on the review of relevant literature, a series of determinants affecting consumer behavior is determined, and the characteristics of recycled products, such as expression value and social value, are determined. An online questionnaire was designed based on this conceptual framework, and 226 valid, complete answers were received. The results show that the emphasis on social value and environmental protection consciousness can effectively affect consumers' decision-making. These findings were helpful to the research of whole green environmental protection and ecological clothing recycling industry system, promote the sustainable development of the clothing industry.

Geopolymer concrete with high strength, workability and setting time using recycled steel wires and basalt powder

  • Ali Ihsan Celik;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • 제46권5호
    • /
    • pp.689-707
    • /
    • 2023
  • Geopolymer concrete production is interesting as it is an alternative to portland cement concrete. However, workability, setting time and strength expectations limit the sustainable application of geopolymer concrete in practice. This study aims to improve the production of geopolymer concrete to mitigate these drawbacks. The improvement in the workability and setting time were achieved with the additional use of NaOH solution whereas an increase in the strength was gained with the addition of recycled steel fibers from waste tires. In addition, the use of 25% basalt powder instead of fly ash and the addition of recycled steel fibers from waste tires improved its environmental feature. The samples with steel fiber ratios ranging between 0.5% and 5% and basalt powder of 25%, 50% and 75% were tested under both compressive and flexure forces. The compressive and flexural capacities were significantly enhanced by utilizing recycled steel fibers from waste tires. However, decreases in these capacities were detected as the basalt powder ratio increased. In general, as the waste wire ratio increased, the compressive strength gradually increased. While the compressive strength of the reference sample was 26 MPa, when the wire ratio was 5%, the compressive strength increased up to 53 MPa. With the addition of 75% basalt powder, the compressive strength decreases by 60%, but when the 3% wire ratio is reached, the compressive strength is obtained as in the reference sample. In the sample group to which 25% basalt powder was added, the flexural strength increased by 97% when the waste wire addition rate was 5%. In addition, while the energy absorption capacity was 0.66 kN in the reference sample, it increased to 12.33 kN with the addition of 5% wire. The production phase revealed that basalt powder and waste steel wire had a significant impact on the workability and setting time. Furthermore, SEM analyses were performed.

Design of Smart Farm Growth Information Management Model Based on Autonomous Sensors

  • Yoon-Su Jeong
    • Journal of the Korea Society of Computer and Information
    • /
    • 제28권4호
    • /
    • pp.113-120
    • /
    • 2023
  • Smart farms are steadily increasing in research to minimize labor, energy, and quantity put into crops as IoT technology and artificial intelligence technology are combined. However, research on efficiently managing crop growth information in smart farms has been insufficient to date. In this paper, we propose a management technique that can efficiently monitor crop growth information by applying autonomous sensors to smart farms. The proposed technique focuses on collecting crop growth information through autonomous sensors and then recycling the growth information to crop cultivation. In particular, the proposed technique allocates crop growth information to one slot and then weights each crop to perform load balancing, minimizing interference between crop growth information. In addition, when processing crop growth information in four stages (sensing detection stage, sensing transmission stage, application processing stage, data management stage, etc.), the proposed technique computerizes important crop management points in real time, so an immediate warning system works outside of the management criteria. As a result of the performance evaluation, the accuracy of the autonomous sensor was improved by 22.9% on average compared to the existing technique, and the efficiency was improved by 16.4% on average compared to the existing technique.