DOI QR코드

DOI QR Code

Geopolymer concrete with high strength, workability and setting time using recycled steel wires and basalt powder

  • Ali Ihsan Celik (Department of Construction, Kayseri Universitesi Tomarza Mustafa Akincioglu Vocational School) ;
  • Yasin Onuralp Ozkilic (Department of Civil Engineering, Necmettin Erbakan University)
  • Received : 2022.11.15
  • Accepted : 2023.02.15
  • Published : 2023.03.10

Abstract

Geopolymer concrete production is interesting as it is an alternative to portland cement concrete. However, workability, setting time and strength expectations limit the sustainable application of geopolymer concrete in practice. This study aims to improve the production of geopolymer concrete to mitigate these drawbacks. The improvement in the workability and setting time were achieved with the additional use of NaOH solution whereas an increase in the strength was gained with the addition of recycled steel fibers from waste tires. In addition, the use of 25% basalt powder instead of fly ash and the addition of recycled steel fibers from waste tires improved its environmental feature. The samples with steel fiber ratios ranging between 0.5% and 5% and basalt powder of 25%, 50% and 75% were tested under both compressive and flexure forces. The compressive and flexural capacities were significantly enhanced by utilizing recycled steel fibers from waste tires. However, decreases in these capacities were detected as the basalt powder ratio increased. In general, as the waste wire ratio increased, the compressive strength gradually increased. While the compressive strength of the reference sample was 26 MPa, when the wire ratio was 5%, the compressive strength increased up to 53 MPa. With the addition of 75% basalt powder, the compressive strength decreases by 60%, but when the 3% wire ratio is reached, the compressive strength is obtained as in the reference sample. In the sample group to which 25% basalt powder was added, the flexural strength increased by 97% when the waste wire addition rate was 5%. In addition, while the energy absorption capacity was 0.66 kN in the reference sample, it increased to 12.33 kN with the addition of 5% wire. The production phase revealed that basalt powder and waste steel wire had a significant impact on the workability and setting time. Furthermore, SEM analyses were performed.

Keywords

References

  1. Acar, M.C., Sener, A., Ozbayrak, A. and Celik, A.I. (2020), "Geopolimer Harclarda Zeolit Katkisinin Etkisi", Muhendislik Bilimleri ve Tasarim Dergisi, 8(3), 820-832. https://doi.org/10.21923/jesd.768565.
  2. Ahmed, H.U., Mohammed, A.A. and Mohammed, A.S. (2022), "The role of nanomaterials in geopolymer concrete composites: A state-of-the-art review", J. Build. Eng., 49, 104062. https://doi.org/10.1016/j.jobe.2022.104062.
  3. Akinci, A., Yilmaz, S. and Sen, U. (2012), "Wear behavior of basalt filled low density polyethylene composites", Appl. Compos. Mater., 19(3), 499-511. https://doi.org/10.1007/s10443-011-9208-9.
  4. Aksoylu, C., Ozkilic, Y.O., Hadzima-Nyarko, M., Isik, E. and Arslan, M.H. (2022a), "Investigation on improvement in shear performance of reinforced-concrete beams produced with recycled steel wires from waste tires", Sustainability, 14(20), 13360.
  5. Aksoylu, C., Ozkilic, Y.O., Madenci, E. and Safonov, A. (2022b), "Compressive behavior of pultruded GFRP boxes with concentric openings strengthened by different composite wrappings", Polymers, 14(19), 4095. https://doi.org/10.3390/polym14194095.
  6. Alzeebaree, R., Gulsan, M.E., Nis, A., Mohammedameen, A. and Cevik, A. (2018), "Performance of FRP confined and unconfined geopolymer concrete exposed to sulfate attacks", Steel Compos Struct, 29(2), 201-218. https://doi.org/10.12989/scs.2018.29.2.201.
  7. Al-Fadhli, M. and Alhumoud, J. (2017), "Properties of concrete containing scrap-tire rubber", J. Eng. Res. Appl., 7(3), 36-42. https://doi.org/10.9790/9622-0703023642.
  8. Al-Majidi, M.H., Lampropoulos, A., Cundy, A. and Meikle, S. (2016), "Development of geopolymer mortar under ambient temperature for in situ applications", Construct. Build. Mater., 120, 198-211. https://doi.org/10.1016/j.conbuildmat.2016.05.085.
  9. Anil, N.I.S. (2019), "Compressive strength variation of alkali activated fly ash/slag concrete with different NaOH concentrations and sodium silicate to sodium hydroxide ratios", J. Sustain. Construct. Mater. Technol., 4(2), 351-360. https://doi.org/10.29187/jscmt.2019.39.
  10. Al-Busaltan, S., Dulaimi, A., Al-Nageim, H., Mahmood, S., Kadhim, M.A., Al-Kafaji, M. and Ozkilic, Y.O. (2023), "Improving the mechanical properties and durability of cold bitumen emulsion mixtures using waste products and microwave heating energy", Buildings, 13(2), 414. https://doi.org/10.3390/buildings13020414.
  11. Aldemir, A., Akduman, S., Kocaer, O., Aktepe, R., Sahmaran, M., Yildirim, G. and Ashour, A. (2022), "Shear behaviour of reinforced construction and demolition waste-based geopolymer concrete beams", J. Build. Eng., 47, 103861. https://doi.org/10.1016/j.jobe.2021.103861.
  12. Alhawat, M., Ashour, A., Yildirim, G., Aldemir, A. and Sahmaran, M. (2022), "Properties of geopolymers sourced from construction and demolition waste: A review", J. Build. Eng., 50, 104104. https://doi.org/10.1016/j.jobe.2022.104104.
  13. Alomayri, T., Shaikh, F.U.A. and Low, I.M. (2014), "Synthesis and mechanical properties of cotton fabric reinforced geopolymer composites", Compos. Part B: Eng., 60, 36-42. https://doi.org/10.1016/j.compositesb.2013.12.036.
  14. Anuradha, R. and Roobha, I.M. (2016), "Investigation on steel fibre reinforced geo polymer concrete using by products of industrial waste", Adv. Natural Appl. Sci., 10(10 SE), 81-98.
  15. Arunagiri, K., Elanchezhiyan, P., Marimuthu, V., Arunkumar, G. and Rajeswaran, P. (2017), "Mechanical properties of basalt fiber based geopolymer concrete", Int. J. Sci., Eng. Technol. Res. (IJSETR), 6(4), 551.
  16. Arslan, M.H., Ozkilic, Y.O., Arslan, H.D. and Sahin, O.S. (2023), "Experimental and numerical investigation of the structural, thermal and acoustic performance of reinforced concrete slabs with balls for a cleaner environment", Int. J. Civil Eng., 1-16. https://doi.org/10.1007/s40999-022-00802-4.
  17. Assi, L.N., Carter, K., Deaver, E. and Ziehl, P. (2020), "Review of availability of source materials for geopolymer/sustainable concrete", J. Cleaner Production, 263, 121477. https://doi.org/10.1016/j.jclepro.2020.121477.
  18. Basaran, B., Kalkan, I., Aksoylu, C., Ozkilic, Y.O. and Sabri, M. M.S. (2022), "Effects of waste powder, fine and coarse marble aggregates on concrete compressive strength", Sustainability, 14(21), 14388. https://doi.org/10.3390/su142114388.
  19. Beskopylny, A.N., Shcherban, E.M., Stel'makh, S.A., Meskhi, B., Shilov, A.A., Varavka, V. and Karalar, M. (2022), "Composition component influence on concrete properties with the additive of rubber tree seed shells", Appl. Sci., 12(22), 11744. https://doi.org/10.3390/app122211744.
  20. Bondar, D., Ma, Q., Soutsos, M., Basheer, M., Provis, J.L. and Nanukuttan, S. (2018), "Alkali activated slag concretes designed for a desired slump, strength and chloride diffusivity", Construct. Build. Mater., 190, 191-199. https://doi.org/10.1016/j.conbuildmat.2018.09.124.
  21. Celik, A., Yilmaz, K., Canpolat, O., Al-Mashhadani, M.M., Aygormez, Y. and Uysal, M. (2018), "High-temperature behavior and mechanical characteristics of boron waste additive metakaolin based geopolymer composites reinforced with synthetic fibers", Construct. Build. Mater., 187, 1190-1203. https://doi.org/10.1016/j.conbuildmat.2018.08.062.
  22. Celik A.I. (2023), "Mechanical performance of geopolymer concrete based on basalt and marble powder", Iran. J. Sci. Technol., Transact. Civil Eng, https://doi.org/10.1007/s40996- 023-01063-4.
  23. Celik, A.I., Ozkilic, Y.O., Zeybek, O., Karalar, M., Qaidi, S., Ahmad, J., Burduhos-Nergis, D.D. and Bejinariu, C. (2022a), "Mechanical behavior of crushed waste glass as replacement of aggregates, materials", 15(22), 8093. https://doi.org/10.3390/ma15228093.
  24. Celik, A.I., Ozkilic, Y.O., Zeybek, O., Ozdoner, N. and Tayeh, B.A. (2022b), "Performance assessment of fiber-reinforced concrete produced with waste lathe fibers", Sustainability, 14(19), 11817. https://doi.org/10.3390/su141911817.
  25. Cheng, Y., Cong, P., Zhao, Q., Hao, H., Mei, L., Zhang, A. and Hu, M. (2022), "Study on the effectiveness of silica fume-derived activator as a substitute for water glass in fly ash-based geopolymer", J. Build. Eng., 104228. https://doi.org/10.1016/j.jobe.2022.104228.
  26. Chindaprasirt, P., Chareerat, T. and Sirivivatnanon, V. (2007), "Workability and strength of coarse high calcium fly ash geopolymer", Cement Concrete Compos., 29(3), 224-229. https://doi.org/10.1016/j.cemconcomp.2006.11.002
  27. Chindaprasirt, P., Sriopas, B., Phosri, P., Yoddumrong, P., Anantakarn, K. and Kroehong, W. (2022), "Hybrid high calcium fly ash alkali-activated repair material for concrete exposed to sulfate environment", J. Build. Eng., 45, 103590.https://doi.org/10.1016/j.jobe.2021.103590.
  28. Copetti Callai, S., Tataranni, P. and Sangiorgi, C. (2021), "Preliminary Evaluation of Geopolymer Mix Design Applying the Design of Experiments Method", Infrastructures, 6(3), 35. https://doi.org/10.3390/infrastructures6030035.
  29. Deb, P.S., Nath, P. and Sarker, P.K. (2014), "The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature", Mater. Des., 62, 32-39. https://doi.org/10.1016/j.cemconcomp.2006.11.002.
  30. Dias, D.P. and Thaumaturgo, C. (2005), "Fracture toughness of geopolymeric concretes reinforced with basalt fibers", Cement Concrete Compos., 27(1), 49-54. https://doi.org/10.1016/j.cemconcomp.2004.02.044.
  31. Eiras, J.N., Segovia, F., Borrachero, M.V., Monzo, J., Bonilla, M., and Paya,J. (2014), "Physical and mechanical properties of foamed Portland cement composite containing crumb rubber from worn tires", Mater. Design, 59, 550-557. https://doi.org/10.1016/j.matdes.2014.03.021.
  32. Elsayed, M., Badawy, S., Tayeh, B.A., Elymany, M., Salem, M., and ElGawady, M. (2022a), "Shear behaviour of ultra-high performance concrete beams with openings", Struct., 43, 546-558. https://doi.org/10.1016/j.istruc.2022.06.071.
  33. Elsayed, M., Althoey, F., Tayeh, B.A., Ahmed, N., and Abd El-Azim, A. (2022b), "Behavior of eccentrically loaded hybrid fiber-reinforced high strength concrete columns exposed to elevated temperature", J. Mater. Res. Technol., 19, 1003-1020. https://doi.org/10.1016/j.jmrt.2022.05.079.
  34. Fayed, S., Madenci, E., Ozkilic, Y.O. and Mansour, W. (2023), "Improving bond performance of ribbed steel bars embedded in recycled aggregate concrete using steel mesh fabric confinement", Construct. Build. Mater., 369, 130452. https://doi.org/10.1016/j.conbuildmat.2023.130452.
  35. Gupta, T. and Rao, M.C. (2021), "Prediction of compressive strength of geopolymer concrete using machine learning techniques", Struct. Concrete. https://doi.org/10.1002/suco.202100354.
  36. Hassan, A., Arif, M. and Shariq, M. (2019), "Use of geopolymer concrete for a cleaner and sustainable environment-A review of mechanical properties and microstructure", J. Clean. Product., 223, 704-728. https://doi.org/10.1016/j.jclepro.2019.03.051.
  37. Hakeem, I.Y., Hosen, M.D., Alyami, M., Qaidi, S., Ozkilic, Y.O., Alhamami, A. and Alharthai, M. (2023), "Effect of thermal cycles on the eng properties and durability of sustainable fibrous high-strength concrete", Front. Mater., 10, 1094864.
  38. Hardjito, D. and Rangan, B.V. (2005), "Development and properties of low-calcium fly ash-based geopolymer concrete", http://hdl.handle.net/20.500.11937/5594.
  39. He, X., Yuhua, Z., Qaidi, S., Isleem, H. F., Zaid, O., Althoey, F., and Ahmad, J. (2022), "Mine tailings-based geopolymers: A comprehensive review", Ceramics Int.,. https://doi.org/10.1016/j.ceramint.2022.05.345.
  40. Hu, M., Zhu, X. and Long, F. (2009), "Alkali-activated fly ash-based geopolymers with zeolite or bentonite as additives", Cement Concrete Compos., 31(10), 762-768. https://doi.org/10.1016/j.cemconcomp.2009.07.006.
  41. Jamkar, S.S., Ghugal, Y.M. and Patankar, S.V. (2013), "Effect of fly ash fineness on workability and compressive strength of geopolymer concrete", Indian Concrete J., 87(4), 57-61.
  42. Jamshaid, H. and Mishra, R. (2016), "A green material from rock: basalt fiber-a review", J. Textile Institute, 107(7), 923-937. https://doi.org/10.1080/00405000.2015.1071940.
  43. Jumrat, S., Chatveera, B. and Rattanadecho, P. (2011), "Dielectric properties and temperature profile of fly ash-based geopolymer mortar", Int. Commun. Heat Mass Transfer, 38(2), 242-248. https://doi.org/10.1016/j.icheatmasstransfer.2010.11.020.
  44. Karalar, M., Ozkilic, Y.O., Deifalla, A.F., Aksoylu, C., Arslan, M.H., Ahmad, M. and Sabri, M.M.S. (2022a), "Improvement in bending performance of reinforced concrete beams produced with waste lathe scraps", Sustainability, 14(19), 12660. https://doi.org/10.3390/su141912660.
  45. Karalar, M., Bilir, T., Cavuslu, M., Ozkilic, Y.O. and Sabri, M.M.S. (2022b), "Use of recycled coal bottom ash in reinforced concrete beams as replacement for aggregate", Front. Mater, 675, 1064604.
  46. Koroglu, M.A., and Ashour, A. (2019), "Mechanical properties of self-compacting concrete with recycled bead wires", Revista de la construccion, 18(3), 501-512. http://dx.doi.org/10.7764/rdlc.18.3.501.
  47. Laxmi, G., and Patil, S.G. (2022), Effect of fiber types, shape, aspect ratio and volume fraction on properties of geopolymer concrete-A review.Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.04.157.
  48. Li, N., Shi, C., Zhang, Z., Wang, H., and Liu, Y. (2019), "A review on mixture design methods for geopolymer concrete", Composites Part B: Eng, 178, 107490. https://doi.org/10.1016/j.compositesb.2019.107490.
  49. Lokuge, W., Wilson, A., Gunasekara, C., Law, D.W. and Setunge, S. (2018), "Design of fly ash geopolymer concrete mix proportions using multivariate adaptive regression spline model", Construct. Build. Mater., 166, 472-481. https://doi.org/10.1016/j.conbuildmat.2018.01.175.
  50. Lyu, X., Robinson, N., Elchalakani, M., Johns, M. L., Dong, M. and Nie, S. (2022), "Sea sand seawater geopolymer concrete", J. Build. Eng, 50, 104141. https://doi.org/10.1016/j.jobe.2022.104141.
  51. Madenci, E., Fayed, S., Mansour, W. and Ozkilic, Y.O. (2022), "Buckling performance of pultruded glass fiber reinforced polymer profiles infilled with waste steel fiber reinforced concrete under axial compression", Steel Compos. Struct., 45(5), 652-663. https://doi.org/10.12989/scs.2022.45.5.652.
  52. Malkawi, A.B., Nuruddin, M.F., Fauzi, A., Almattarneh, H. and Mohammed, B.S. (2016), "Effects of alkaline solution on properties of the HCFA geopolymer mortars", Procedia Eng, 148, 710-717. https://doi.org/10.1016/j.proeng.2016.06.581.
  53. Mehta, A., Siddique, R., Singh, B.P., Aggoun, S., Lagod, G. and Barnat-Hunek, D. (2017), "Influence of various parameters on strength and absorption properties of fly ash based geopolymer concrete designed by Taguchi method". Construct. Build. Mater., 150, 817-824. https://doi.org/10.1016/j.conbuildmat.2017.06.066.
  54. Mucsi, G., Szenczi, A. and Nagy, S. (2018a), "Fiber reinforced geopolymer from synergetic utilization of fly ash and waste tire", J. Clean. Product., 178, 429-440. https://doi.org/10.1016/j.jclepro.2018.01.018.
  55. Mohd, M.A.B. and I,K.N. (2011), "Review on fly ash-based geopolymer concrete without Portland Cement", J. Eng. Technol. Res., 3(1), 1-4.
  56. Nematollahi, B., Sanjayan, J., Qiu, J. and Yang, E.H. (2017), "High ductile behavior of a polyethylene fiber-reinforced one-part geopolymer composite: A micromechanics-based investigation", Archives Civil Mech. Eng, 17(3), 555-563. http://dx.doi.org/10.1016/j.acme.2016.12.005.
  57. Nikolenko, S.D., Sushko, E.A., Sazonova, S.A., Odnolko, A.A. and Manokhin, V.Y. (2017), "Behaviour of concrete with a disperse reinforcement under dynamic loads", Magaz. Civil Eng, 7(75), 3-14.
  58. Ozbayrak, A., Kucukgoncu, H., Atas, O., Aslanbay, H.H., Aslanbay, Y.G. and Altun, F. (2023), "Determination of stress-strain relationship based on alkali activator ratios in geopolymer concretes and development of empirical formulations", Structures, 48, 2048-2061. https://doi.org/10.1016/j.istruc.2023.01.104.
  59. Ozkilic, Y.O., Karalar, M., Aksoylu, Ceyhun., Sabri, M., Beskopylny, A.N., Stel'makh E,S.A. and Shcherban, E.M. "Flexural behavior of reinforced concrete beams using waste marble powder towards application of sustainable concrete", Front. Mater., 701.
  60. Ozturk, O. (2022), "Eng performance of reinforced lightweight geopolymer concrete beams produced by ambient curing". Struct. Concrete, 23(4), 2076-2087. https://doi.org/10.1002/suco.202000664.
  61. Malkawi, A.B., Nuruddin, M.F., Fauzi, A., Almattarneh, H. and Mohammed, B.S. (2016), "Effects of alkaline solution on properties of the HCFA geopolymer mortars", Procedia Eng, 148, 710-717. https://doi.org/10.1016/j.proeng.2016.06.581.
  62. Malhotra, V.M. (1990), "Properties of high-strength, lightweight concrete incorporating fly ash and silica fume", Special Publication, 121, 645-666. https://doi.org/10.14359/2567.
  63. Qaidi, S.M., Tayeh, B.A., Isleem, H.F., de Azevedo, A.R., Ahmed, H.U. and Emad, W. (2022a), "Sustainable utilization of red mud waste (bauxite residue) and slag for the production of geopolymer composites: A review", Case Studies Construct. Mater., e00994. https://doi.org/10.1016/j.cscm.2022.e00994.
  64. Qaidi, S.M., Tayeh, B.A., Zeyad, A.M., de Azevedo, A.R., Ahmed, H. U. and Emad, W. (2022b), "Recycling of mine tailings for the geopolymers production: A systematic review", Case Studies Construct. Mater., e00933. https://doi.org/10.1016/j.cscm.2022.e00933.
  65. Qaidi, S. M., Mohammed, A.S., Ahmed, H U., Faraj, R.H., Emad, W., Tayeh, B.A. and Sor, N.H. (2022c), "Rubberized geopolymer composites: A comprehensive review", Ceramics Int., https://doi.org/10.1016/j.ceramint.2022.06.123.
  66. Qaidi, S., Najm, H.M., Abed, S.M., Ozkilic, Y.O., Al Dughaishi, H., Alosta, M., Sabri, M.M.S., Alkhatib, F. and Milad, A. (2022d), "Concrete containing waste glass as an environmentally friendly aggregate: a review on fresh and mechanical characteristics", Materials, 15(18), 6222.
  67. Qaidi, S., Al-Kamaki, Y., Hakeem, I., Dulaimi, A.F., Ozkilic, Y., Sabri, M. and Sergeev, V. (2023), "Investigation of the physicalmechanical properties and durability of high-strength concrete with recycled PET as a partial replacement for fine aggregates", Front. Mater., 10, 1101146.
  68. Rath, B. (2022), "Effect of natural rubber latex on the shrinkage behavior and porosity of geopolymer concrete", Struct. Concrete, 23(4), 2150-2161. https://doi.org/10.1002/suco.202000788.
  69. Robayo-Salazar, R., Valencia-Saavedra, W., and de Gutierrez, R. M. (2022), "Recycling of concrete, ceramic, and masonry waste via alkaline activation: Obtaining and characterization of hybrid cements", J. Build. Eng, 46, 103698. https://doi.org/10.1016/j.jobe.2021.103698.
  70. Ronad, A., Karikatti, V.B. and Dyavanal, S.S. (2016), "A study on mechanical properties of geopolymer concrete reinforced with basalt fiber", IJRET: Int. J. Res. Eng. Technol., 5(07), 474-478. https://doi.org/10.15623/ijret.2016.0507074
  71. Satria, J., Sugiarto, A. and Hardjito, D. (2017), "Effect of variability of fly ash obtained from the same source on the characteristics of geopolymer", MATEC Web of Conferences (Vol. 97, p. 01026), EDP Sciences. https://doi.org/10.1051/matecconf/20179701026.
  72. Satria, J., Sugiarto, A. and Hardjito, D. (2017), "Effect of variability of fly ash obtained from the same source on the characteristics of geopolymer", MATEC Web of Conferences. https://doi.org/10.1051/matecconf/20179701026.
  73. Shadnia, R., Zhang, L. and Li, P. (2015), "Experimental study of geopolymer mortar with incorporated PCM", Construct. Build. Mater., 84, 95-102. https://doi.org/10.1016/j.conbuildmat.2015.03.066.
  74. Shahmansouri, A.A., Yazdani, M., Ghanbari, S., Bengar, H.A., Jafari, A. and Ghatte, H.F. (2021), "Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite", J. Clean. Product., 279, 123697. https://doi.org/10.1016/j.jclepro.2020.123697.
  75. Shcherban, E.M., Stel'makh, S.A., Beskopylny, A.N., Mailyan, L.R., Meskhi, B., Shilov, A.A. and Aksoylu, C. (2022), "Normal-weight concrete with improved stress-strain characteristics reinforced with dispersed coconut fibers", Appl. Sci., 12(22), 11734. https://doi.org/10.3390/app122211734.
  76. Shen, W., Shan, L., Zhang, T., Ma, H., Cai, Z. and Shi, H. (2013), "Investigation on polymer-rubber aggregate modified porous concrete", Construct. Build. Mater., 38, 667-674. https://doi.org/10.1016/j.conbuildmat.2012.09.006.
  77. Shu, X. and Huang, B. (2014), "Recycling of waste tire rubber in asphalt and portland cement concrete: An overview", Construct. Build. Mater., 67, 217-224. https://doi.org/10.1016/j.conbuildmat.2013.11.027.
  78. Sliseris, J. (2018), "Numerical estimation of the mechanical properties of a steel-fiber-reinforced geopolymer composite", Mech. Compos. Mater., 54(5), 621-634. https://doi.org/10.1007/s11029-018-9770-4.
  79. Sprince, A., Pakrastinsh, L., and Vatin, N. (2016), "Crack formation in cement-based composites", In IOP Conference Series: Materials Science and Eng 123(1), 012050), IOP Publishing. https://doi.org/10.1088/1757-899X/123/1/012050.
  80. Standard, A. (2016), "Standard test method for pulse velocity through concrete, ASTM Standard C597-16". ASTM International, West Conshohocken.
  81. Tariq, H., Siddique, R.M.A., Shah, S.A.R., Azab, M., Qadeer, R., Ullah, M.K. and Iqbal, F. (2022), "Mechanical performance of polymeric ARGF-based Fly ash-concrete composites: a study for eco-friendly circular economy application", Polymers, 14(9), 1774. https://doi.org/10.3390/polym14091774.
  82. Tekin, I. (2016), "Properties of NaOH activated geopolymer with marble, travertine and volcanic tuff wastes", Construct. Build. Mater., 127, 607-617. https://doi.org/10.1016/j.conbuildmat.2016.10.038.
  83. Tiwari, A., Singh, S. and Nagar, R. (2016), "Feasibility assessment for partial replacement of fine aggregate to attain cleaner production perspective in concrete: A review", J. Cleaner Production, 135, 490-507. https://doi.org/10.1016/j.jclepro.2016.06.130.
  84. Topark-Ngarm, P., Chindaprasirt, P. and Sata, V. (2015), "Setting time, strength, and bond of high-calcium fly ash geopolymer concrete", J. Mater. Civil. Eng, 27(7), 04014198. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001157.
  85. Tucci, F. and Vedernikov, A. (2021), "Design criteria for pultruded structural elements", https://doi.org/10.1016/B978-0-12-819724-0.00086-0.
  86. Verma, M. and Dev, N. (2022), "Effect of ground granulated blast furnace slag and fly ash ratio and the curing conditions on the mechanical properties of geopolymer concrete". Struct. Concrete, 23(4), 2015-2029. https://doi.org/10.1002/suco.202000536.
  87. Vishwakarma, V. and Ramachandran, D. (2018), "Green concrete mix using solid waste and nanoparticles as alternatives-A review", Construct. Build. Mater., 162, 96-103. https://doi.org/10.1016/j.conbuildmat.2017.11.174.
  88. Wang, Y., Chan, C.L., Leong, S.H. and Zhang, M. (2020), "Eng properties of strain hardening geopolymer composites with hybrid polyvinyl alcohol and recycled steel fibres", Construct. Build. Mater., 261, 120585. https://doi.org/10.1016/j.conbuildmat.2020.120585.
  89. Wijaya, S.W. and Hardjito, D. (2016), "Factors affecting the setting time of fly ash-based geopolymer", Materials Science Forum (Vol. 841, pp. 90-97), Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/MSF.841.90.
  90. Vedernikov, A., Minchenkov, K., Gusev, S., Sulimov, A., Zhou, P., Li, C. and Safonov, A. (2022), "Effects of the pre-consolidated materials manufacturing method on the mechanical properties of pultruded thermoplastic composites", Polymers, 14(11), 2246. https://doi.org/10.3390/polym14112246.
  91. Vedernikov, A., Safonov, A., Tucci, F., Carlone, P. and Akhatov, I. (2021), "Analysis of spring-in deformation in l-shaped profiles pultruded at different pulling speeds:", Mathem. Simul. Experiment. Results, https://doi.org/10.25518/esaform21.4743.
  92. Yan, S., He, P., Jia, D., Wang, J., Duan, X., Yang, Z. and Zhou, Y. (2017), "Effects of high-temperature heat treatment on the microstructure and mechanical performance of hybrid Cf-SiCf-(Al2O3p) reinforced geopolymer composites", Compos. Part B: Eng, 114, 289-298. https://doi.org/10.1016/j.compositesb.2017.02.011.
  93. Youssf, O., Elchalakani, M., Hassanli, R., Roychand, R., Zhuge, Y., Gravina, R.J. and Mills, J.E. (2022), "Mechanical performance and durability of geopolymer lightweight rubber concrete", J. Build. Eng, 45, 103608. https://doi.org/10.1016/j.jobe.2021.103608.
  94. Zeybek, O., Ozkilic, Y.O., Celik, A.I., Deifalla, A.F., Ahmad, M., and Sabri Sabri, M.M. (2022a), "Performance evaluation of fiber-reinforced concrete produced with steel fibers extracted from waste tire", Front. Mater., 692.
  95. Zeybek, O., Ozkilic, Y.O., Karalar, M., Celik, A.I., Qaidi, S., Ahmad, J., Burduhos-Nergis, D.D. and Burduhos-Nergis, D.P. (2022b), "Influence of replacing cement with waste glass on mechanical properties of concrete", Materials, 15(21), 7513. https://doi.org/10.3390/ma15217513.