• 제목/요약/키워드: Energy prediction

검색결과 2,366건 처리시간 0.027초

Energy Use Prediction Model in Digital Twin

  • Wang, Jihwan;Jin, Chengquan;Lee, Yeongchan;Lee, Sanghoon;Hyun, Changtaek
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.1256-1263
    • /
    • 2022
  • With the advent of the Fourth Industrial Revolution, the amount of energy used in buildings has been increasing due to changes in the energy use structure caused by the massive spread of information-oriented equipment, climate change and greenhouse gas emissions. For the efficient use of energy, it is necessary to have a plan that can predict and reduce the amount of energy use according to the type of energy source and the use of buildings. To address such issues, this study presents a model embedded in a digital twin that predicts energy use in buildings. The digital twin is a system that can support a solution of urban problems through the process of simulations and analyses based on the data collected via sensors in real-time. To develop the energy use prediction model, energy-related data such as actual room use, power use and gas use were collected. Factors that significantly affect energy use were identified through a correlation analysis and multiple regression analysis based on the collected data. The proof-of-concept prototype was developed with an exhibition facility for performance evaluation and validation. The test results confirm that the error rate of the energy consumption prediction model decreases, and the prediction performance improves as the data is accumulated by comparing the error rates of the model. The energy use prediction model thus predicts future energy use and supports formulating a systematic energy management plan in consideration of characteristics of building spaces such as the purpose and the occupancy time of each room. It is suggested to collect and analyze data from other facilities in the future to develop a general-purpose energy use prediction model.

  • PDF

Pipeline wall thinning rate prediction model based on machine learning

  • Moon, Seongin;Kim, Kyungmo;Lee, Gyeong-Geun;Yu, Yongkyun;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4060-4066
    • /
    • 2021
  • Flow-accelerated corrosion (FAC) of carbon steel piping is a significant problem in nuclear power plants. The basic process of FAC is currently understood relatively well; however, the accuracy of prediction models of the wall-thinning rate under an FAC environment is not reliable. Herein, we propose a methodology to construct pipe wall-thinning rate prediction models using artificial neural networks and a convolutional neural network, which is confined to a straight pipe without geometric changes. Furthermore, a methodology to generate training data is proposed to efficiently train the neural network for the development of a machine learning-based FAC prediction model. Consequently, it is concluded that machine learning can be used to construct pipe wall thinning rate prediction models and optimize the number of training datasets for training the machine learning algorithm. The proposed methodology can be applied to efficiently generate a large dataset from an FAC test to develop a wall thinning rate prediction model for a real situation.

Prediction equations for digestible and metabolizable energy concentrations in feed ingredients and diets for pigs based on chemical composition

  • Sung, Jung Yeol;Kim, Beob Gyun
    • Animal Bioscience
    • /
    • 제34권2호
    • /
    • pp.306-311
    • /
    • 2021
  • Objective: The objectives were to develop prediction equations for digestible energy (DE) and metabolizable energy (ME) of feed ingredients and diets for pigs based on chemical composition and to evaluate the accuracy of the equations using in vivo data. Methods: A total of 734 data points from 81 experiments were employed to develop prediction equations for DE and ME in feed ingredients and diets. The CORR procedure of SAS was used to determine correlation coefficients between chemical components and energy concentrations and the REG procedure was used to generate prediction equations. Developed equations were tested for the accuracy according to the regression analysis using in vivo data. Results: The DE and ME in feed ingredients and diets were most negatively correlated with acid detergent fiber or neutral detergent fiber (NDF; r = -0.46 to r = -0.67; p<0.05). Three prediction equations for feed ingredients reflected in vivo data well as follows: DE = 728+0.76×gross energy (GE)-25.18×NDF (R2 = 0.64); ME = 965+0.66×GE-24.62×NDF (R2 = 0.60); ME = 1,133+0.65×GE-29.05×ash-23.17×NDF (R2 = 0.67). Conclusion: In conclusion, the equations suggested in the current study would predict energy concentration in feed ingredients and diets.

인공신경망을 이용한 데이터베이스 기반의 광역단지 에너지 수요예측 기법 개발 (A Methodology of Databased Energy Demand Prediction Using Artificial Neural Networks for a Urban Community)

  • 공동석;곽영훈;이병정;허정호
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.184-189
    • /
    • 2009
  • In order to improve the operation of energy systems, it is necessary for the urban communities to have reliable optimization routines, both computerized and manual, implemented in their organizations. However, before a production plan for the energy system units can be constructed, a prediction of the energy systems first needs to be determined. So, several methodologies have been proposed for energy demand prediction, but due to uncertainties in urban community, many of them will fail in practice. The main topic of this paper has been the development of a method for energy demand prediction at urban community. Energy demand prediction is important input parameters to plan for the energy planing. This paper presents a energy demand prediction method which estimates heat and electricity for various building categories. The method has been based on artificial neural networks(ANN). The advantage of ANN with respect to the other method is their ability of modeling a multivariable problem given by the complex relationships between the variables. Also, the ANN can extract the relationships among these variables by means of learning with training data. In this paper, the ANN have been applied in oder to correlate weather conditions, calendar data, schedules, etc. Space heating, cooling, hot water and HVAC electricity can be predicted using this method. This method can produce 10% of errors hourly load profile from individual building to urban community.

  • PDF

Effective markov transition matrix를 이용한 풍속예측 및 MCP 모델과 비교 (Accurate Wind Speed Prediction Using Effective Markov Transition Matrix and Comparison with Other MCP Models)

  • 강민상;손은국;이진재;강승진
    • 신재생에너지
    • /
    • 제18권1호
    • /
    • pp.17-28
    • /
    • 2022
  • This paper presents an effective Markov transition matrix (EMTM), which will be used to calculate the wind speed at the target site in a wind farm to accurately predict wind energy production. The existing MTS prediction method using a Markov transition matrix (MTM) exhibits a limitation where significant prediction variations are observed owing to random selection errors and its bin width. The proposed method selects the effective states of the MTM and refines its bin width to reduce the error of random selection during a gap filling procedure in MTS. The EMTM reduces the level of variation in the repeated prediction of wind speed by using the coefficient of variations and range of variations. In a case study, MTS exhibited better performance than other MCP models when EMTM was applied to estimate a one-day wind speed, by using mean relative and root mean square errors.

고무의 피로 수명 예측을 위한 찢김에너지 수식화 (Estimation of Tearing Energy for Fatigue Life Prediction of Rubber Material)

  • 김호;김헌영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.172-177
    • /
    • 2004
  • Fatigue life prediction is based on fracture mechanics and database which is established from experimental method. Rubber material also uses the same way for fatigue life prediction. But the absence of standardization of rubber material, various way of composition by each rubber company and uncertainty of fracture criterion makes the design of fatigue life by experimental method almost impossible. Tearing energy which has its origin in energy release rate is evaluated as fracture criterion of rubber material and the applicability of fatigue life prediction method are considered. The system of measuring tearing energy using the principal of virtual crack extension method and fatigue life prediction by the minimum number of experiments are proposed.

  • PDF

AWS 풍황데이터를 이용한 강원풍력발전단지 발전량 예측 (AEP Prediction of Gangwon Wind Farm using AWS Wind Data)

  • 우재균;김현기;김병민;유능수
    • 산업기술연구
    • /
    • 제31권A호
    • /
    • pp.119-122
    • /
    • 2011
  • AWS (Automated Weather Station) wind data was used to predict the annual energy production of Gangwon wind farm having a total capacity of 98 MW in Korea. Two common wind energy prediction programs, WAsP and WindSim were used. Predictions were made for three consecutive years of 2007, 2008 and 2009 and the results were compared with the actual annual energy prediction presented in the CDM (Clean Development Mechanism) monitoring report of the wind farm. The results from both prediction programs were close to the actual energy productions and the errors were within 10%.

  • PDF

에너지 빅데이터를 활용한 머신러닝 기반의 생산 예측 모형 연구 (A Study on Production Prediction Model using a Energy Big Data based on Machine Learning)

  • 강미영;김석
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.453-456
    • /
    • 2022
  • 전력망의 역할은 안정적인 전력공급이 최우선이다. 예고 없는 불안정한 상황에 대한 여러 가지 대비에 대한 방안이 필요하다. 기상 데이터를 활용하여 탐구적 데이터 분석을 통한 피처 간의 관계를 파악하여 머신러닝 기반의 에너지 생산 예측 모형을 모델링한다. 본 연구에서는 주성분분석을 사용하여 에너지 생산 예측 시 영향을 미치는 피처를 추출하였으며 머신러닝 모델에 적용함으로써 예측 신뢰도를 높였다. 제안한 모형을 사용하여 특정 기간을 대상으로 생산 에너지를 예측하고 해당 시점의 실제 생산 값과 비교함으로써 주성분분석을 적용한 에너지 생산 예측에 대한 성능을 확인하였다.

  • PDF

공동주택단지의 개발계획단계 시 에너지 수요예측 프로세스에 관한 연구 (A Study on the Process of Energy Demand Prediction of Multi-Family Housing Complex in the Urban Planning Stage)

  • 문선혜;허정호
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.304-310
    • /
    • 2008
  • Currently energy use planning council system is mandatory especially for the urban development project planned on a specified scale or more. The goal of existing demand prediction was to calculate the maximum load by multiplying energy load per unit area by building size. The result of this method may be exaggerated and has a limit in the information of period load. The paper suggests a new forecasting process based on standard unit household in order to upgrade the limit in demand prediction method of multi-family housing complex. The new process was verified by comparing actual using amount of multi-family housing complex to forecasting value of energy use plan.

  • PDF

기상 예보 데이터와 일사 예측 모델식을 활용한 실시간 에너지 수요예측 (Real-time Energy Demand Prediction Method Using Weather Forecasting Data and Solar Model)

  • 곽영훈;천세환;장철용;허정호
    • 설비공학논문집
    • /
    • 제25권6호
    • /
    • pp.310-316
    • /
    • 2013
  • This study was designed to investigate a method for short-term, real-time energy demand prediction, to cope with changing loads for the effective operation and management of buildings. Through a case study, a novel methodology for real-time energy demand prediction with the use of weather forecasting data was suggested. To perform the input and output operations of weather data, and to calculate solar radiation and EnergyPlus, the BCVTB (Building Control Virtual Test Bed) was designed. Through the BCVTB, energy demand prediction for the next 24 hours was carried out, based on 4 real-time weather data and 2 solar radiation calculations. The weather parameters used in a model equation to calculate solar radiation were sourced from the weather data of the KMA (Korea Meteorological Administration). Depending on the local weather forecast data, the results showed their corresponding predicted values. Thus, this methodology was successfully applicable to anywhere that local weather forecast data is available.