• 제목/요약/키워드: Energy performance analysis

검색결과 4,219건 처리시간 0.034초

Impact by Estimation Error of Hourly Horizontal Global Solar Radiation Models on Building Energy Performance Analysis on Building Energy Performance Analysis

  • Kim, Kee Han;Oh, John Kie-Whan
    • KIEAE Journal
    • /
    • 제14권2호
    • /
    • pp.3-10
    • /
    • 2014
  • Impact by estimation error of hourly horizontal global solar radiation in a weather file on building energy performance was investigated in this study. There are a number of weather parameters in a given weather file, such as dry-bulb, wet-bulb, dew-point temperatures; wind speed and direction; station pressure; and solar radiation. Most of them except for solar radiation can be easily obtained from weather stations located on the sites worldwide. However, most weather stations, also including the ones in South Korea, do not measure solar radiation because the measuring equipment for solar radiation is expensive and difficult to maintain. For this reason, many researchers have studied solar radiation estimation models and suggested to apply them to predict solar radiation for different weather stations in South Korea, where the solar radiation is not measured. However, only a few studies have been conducted to identify the impact caused by estimation errors of various solar radiation models on building energy performance analysis. Therefore, four different weather files using different horizontal global solar radiation data, one using measured global solar radiation, and the other three using estimated global solar radiation models, which are Cloud-cover Radiation Model (CRM), Zhang and Huang Model (ZHM), and Meteorological Radiation Model (MRM) were packed into TRY formatted weather files in this study. These were then used for office building energy simulations to compare their energy consumptions, and the results showed that there were differences in the energy consumptions due to these four different solar radiation data. Additionally, it was found that using hourly solar radiation from the estimation models, which had a similar hourly tendency with the hourly measured solar radiation, was the most important key for precise building energy simulation analysis rather than using the solar models that had the best of the monthly or yearly statistical indices.

BIM and Thermographic Sensing: Reflecting the As-is Building Condition in Energy Analysis

  • Ham, Youngjib;Golparvar-Fard, Mani
    • Journal of Construction Engineering and Project Management
    • /
    • 제5권4호
    • /
    • pp.16-22
    • /
    • 2015
  • This paper presents an automated computer vision-based system to update BIM data by leveraging multi-modal visual data collected from existing buildings under inspection. Currently, visual inspections are conducted for building envelopes or mechanical systems, and auditors analyze energy-related contextual information to examine if their performance is maintained as expected by the design. By translating 3D surface thermal profiles into energy performance metrics such as actual R-values at point-level and by mapping such properties to the associated BIM elements using XML Document Object Model (DOM), the proposed method shortens the energy performance modeling gap between the architectural information in the as-designed BIM and the as-is building condition, which improve the reliability of building energy analysis. Several case studies were conducted to experimentally evaluate their impact on BIM-based energy analysis to calculate energy load. The experimental results on existing buildings show that (1) the point-level thermography-based thermal resistance measurement can be automatically matched with the associated BIM elements; and (2) their corresponding thermal properties are automatically updated in gbXML schema. This paper provides practitioners with insight to uncover the fundamentals of how multi-modal visual data can be used to improve the accuracy of building energy modeling for retrofit analysis. Open research challenges and lessons learned from real-world case studies are discussed in detail.

Comparison of Numerical Analysis Methods of APro for the Total System Performance Assessment of a Geological Disposal System

  • Hyun Ho Cho;Hong Jang;Dong Hyuk Lee;Jung-Woo Kim
    • 방사성폐기물학회지
    • /
    • 제21권1호
    • /
    • pp.165-173
    • /
    • 2023
  • Various linear system solvers with multi-physics analysis schemes are compared focusing on the near-field region considering thermal-hydraulic-chemical (THC) coupled multi-physics phenomena. APro, developed at KAERI for total system performance assessment (TSPA), performs a finite element analysis with COMSOL, for which the various combinations of linear system solvers and multi-physics analysis schemes should to be compared. The KBS-3 type disposal system proposed by Sweden is set as the target system and the near-field region, which accounts for most of the computational burden is considered. For comparison of numerical analysis methods, the computing time and memory requirement are the main concerns and thus the simulation time is set up to one year. With a single deposition hole problem, PARDISO and GMRES-SSOR are selected as representative direct and iterative solvers respectively. The performance of representative linear system solvers is then examined through a problem with an increasing number of deposition holes and the GMRES-SSOR solver with a segregated scheme shows the best performance with respect to the computing time and memory requirement. The results of the comparative analysis are expected to provide a good guideline to choose better numerical analysis methods for TSPA.

노후 단독주택의 난방에너지 효율 개선을 위한 대안 선정 방법에 관한 연구 (Alternative Selection Method for Energy Efficiency Improvement of Old Detached House)

  • 황석호
    • 한국태양에너지학회 논문집
    • /
    • 제39권2호
    • /
    • pp.45-55
    • /
    • 2019
  • More than 76% of the detached houses in Korea are over 20 years old. These old detached houses have poor energy efficiency. According to the 2017 Housing Census (Statistics Korea), more than 50% of low-income families live in detached houses. Therefore, the improvement of energy efficiency in old detached houses is needed from the viewpoint of energy welfare. The general method of building energy modelling for the verification of energy efficiency is based on the construction year data of "Building Design Criteria for Energy Saving" due to the cost and time involved in collecting the thermal performance data of buildings. There is poor accuracy with the deterioration of long-term aging of building materials. Also, the selection of alternatives for energy performance improvement is based on the items to be applied, not a performance improvement goal. It is difficult to calculate energy performance that reflects variations in various parameters with dynamic energy simulations. In this study, the influence of long-term aging is used to accurately predict the energy performance of old detached houses. The building energy modelling method is called ENERGY#, which is a static analysis method based on ISO13790. Energy performance is evaluated by a combination of input variables including building orientation, insulation of walls and roof, thermal performance of windows and window/wall ratio, and infiltration rate. Finally, this study provides a way to determine alternatives that meet energy performance improvement goals.

특허인용정보를 활용한 R&D 융합기술의 성과분석 : IT와 에너지의 융합기술과 타 융합기술과의 비교 (R&D Performance Analysis on Convergence Technologies Using Patent Citation : Comparison of IT/ET Convergence with Others)

  • 정우진;이상용
    • Journal of Information Technology Applications and Management
    • /
    • 제21권4호
    • /
    • pp.65-96
    • /
    • 2014
  • To have global competitiveness in newly growing industry, good quality R&D's in convergence technology arerequired. Korean government also started to emphasize the importance of convergence technology as a new engine of growth for the future development. Since 2008, worldwide energy crisis and concerns on low carbon green growth made people focus on the convergence between information technology (IT) and energy technology (ET). However, the R&D performance comparison among the convergence technologies is not well explored so far. Therefore, this study uses Korea's patent citation database to measure the R&D performance of convergence technologies. We adopt technology development cycle, technology spillover analysis, and technology diffusion analysis to see the knowledge flow from R&D industry to others. We find that IT_ET convergence technology generally shows higher R&D performance than other convergence technologies. Contrary to public belief, convergence R&D by big companies has relatively low performance especially measures in technology spillover and technology diffusion. This implies that they might concentrate on delicate Fuel Cell Energy/Environment Technology (FEIT) or Nano Environment/Energy Information Technology (NEIT) rather than general energy information technologies. We also find that Korea's chemical industry may play a crucial role for the growth of other convergence technologies.

주거 공간에서의 룸 에어컨디셔너 실내기 유형에 따른 온열쾌적성 및 에너지성능 평가 (Evaluation of Thermal Comfort and Energy Efficiency According to Indoor-Unit Types of Room Air-Conditioner in Housing Space)

  • 석호태;김동우;양정훈
    • 한국주거학회논문집
    • /
    • 제20권4호
    • /
    • pp.19-29
    • /
    • 2009
  • The purpose of this study is to evaluate the air diffusion performance of a range of indoor units for room airconditioners; the wall-mounted type, floor-standing type, and ceiling-mounted type. These types of units, which have been widely used in housing spaces, will be studied with respect to thermal comfort and the energy performance using CFD analysis. In this study, current air conditioning status and related problems in housing spaces are examined, and a CFD analysis is performed in order to compare and analyze the thermal comfort and energy efficiency across each type of indoor-unit using the PMV, ADPI, EUC and FCEI indexes. The analysis results collectively considering thermal comfort and energy performance indicated that the ceiling-mounted type 4-way indoor unit showed the best diffusion performance in terms of thermal comfort, and had the second best diffusion performance in terms of energy performance after the wall-mounted type under certain conditions.

Micro급 수력발전입지의 성능특성 분석 (Performance Characteristic Anaysis of Micro Hydropower Sites)

  • 박완순;이철형
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.498-501
    • /
    • 2012
  • A methodology to evaluate the performance analysis for micro hydropower sites has been studied. It consists of two main parts; flow duration function which can describe micro hydropower sites and performance analysis to estimate the output characteristics of micro hydropower plants. The output performance characteristics for Magok stream was analyzed, using developed model. Also, primary design specifications such as design flowrate, installed capacity, operational rate and annual electricity production were estimated and dicussed. Additionally, it was found that the developed model in this study is useful tool to estimate feasibility assessment for micro hydropower sites.

  • PDF

건축물의 외피성능 및 실내온도에 따른 에너지 사용량에 관한 연구 (Study on Energy Consumption according to Building Envelope Performance and Indoor Temperature)

  • 유호천;강현구
    • 한국태양에너지학회 논문집
    • /
    • 제31권3호
    • /
    • pp.101-108
    • /
    • 2011
  • This study aims to suggest an energy consumption improvement plan for university buildings through an analysis of energy consumption. Upon a simulation of subject building to interpret energy consumption, it was found that 154.07kWh/$m^2$ of energy is consumpted annually. Improvement of design elements can cut down the energy consumption to 135.61kWh/$m^2$ according to an energy reduction analysis related to envelope performance improvement. Additional improvement of lights and heat exchanger can curtail annual energy consumption to 108.32kWh/$m^2$. Also, an analysis of energy consumption while increasing indoor temperature gradually showed that the two factors are in proportion. $6^{\circ}C$ higher temperature requires over twice of the current energy. Based on this survey result, performance improvement due to building management and envelope elements which influence to building cooling and heating loads can curtail building energy consumption.

EPAR V2.0: AUTOMATED MONITORING AND VISUALIZATION OF POTENTIAL AREAS FOR BUILDING RETROFIT USING THERMAL CAMERAS AND COMPUTATIONAL FLUID DYNAMICS (CFD) MODELS

  • Youngjib Ham;Mani Golparvar-Fard
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.279-286
    • /
    • 2013
  • This paper introduces a new method for identification of building energy performance problems. The presented method is based on automated analysis and visualization of deviations between actual and expected energy performance of the building using EPAR (Energy Performance Augmented Reality) models. For generating EPAR models, during building inspections, energy auditors collect a large number of digital and thermal imagery using a consumer-level single thermal camera that has a built-in digital lens. Based on a pipeline of image-based 3D reconstruction algorithms built on GPU and multi-core CPU architecture, 3D geometrical and thermal point cloud models of the building under inspection are automatically generated and integrated. Then, the resulting actual 3D spatio-thermal model and the expected energy performance model simulated using computational fluid dynamics (CFD) analysis are superimposed within an augmented reality environment. Based on the resulting EPAR models which jointly visualize the actual and expected energy performance of the building under inspection, two new algorithms are introduced for quick and reliable identification of potential performance problems: 1) 3D thermal mesh modeling using k-d trees and nearest neighbor searching to automate calculation of temperature deviations; and 2) automated visualization of performance deviations using a metaphor based on traffic light colors. The proposed EPAR v2.0 modeling method is validated on several interior locations of a residential building and an instructional facility. Our empirical observations show that the automated energy performance analysis using EPAR models enables performance deviations to be rapidly and accurately identified. The visualization of performance deviations in 3D enables auditors to easily identify potential building performance problems. Rather than manually analyzing thermal imagery, auditors can focus on other important tasks such as evaluating possible remedial alternatives.

  • PDF

에너지 절약형 건축물 설계를 위한 대학 강의동 형태별 에너지 성능 비교에 관한 연구 (An Energy Performance Comparison of University Lecture Facilities for Energy Saving Building Design)

  • 김태훈;서지효;추승연
    • 대한건축학회논문집:계획계
    • /
    • 제34권11호
    • /
    • pp.105-112
    • /
    • 2018
  • Global environmental problems are growing, and the importance of buildings with high energy consumption has been emphasized. In Korea, the Ministry of Land, Transport and Maritime Affairs has been promoting the mandatory zero energy building since 2020, and guidelines related to the zero energy building have been developed. In addition, based on the "Energy-saving Design Criteria for Buildings" of the "Green Building Promotion Act" in Korea, the standards for energy-saving design are specified and the energy saving plan is written. Besides, the 'Energy-saving construction standards for eco-friendly houses' also specify insulation, machinery, equipment, and sunshade. Also, there is little consideration about the cost such as construction cost and material cost which should be considered important in the construction stage. Therefore, this study aims at analysis of building type and energy performance versus materials for energy saving building design considering energy performance in planning aspect of initial design stage. In this study, because the variables can not be neglected in this study, it is selected as the lecture facility of the 'K' university campus building which can consider the remaining factors except the passive design element as the control variable, Energy performance analysis.