• Title/Summary/Keyword: Energy meter

Search Result 362, Processing Time 0.027 seconds

Self Assembled Patterns of Ag Using Hydrophobic and Hydrophilic Surface Characteristics of Glass (유리기판의 친수.소수 상태 변화를 이용한 자기정렬 Ag Pattern 형성 연구)

  • Choo Byoung-Kwon;Choi Jung-Su;Kim Gun-Jeong;Lee Sun-Hee;Park Kyu-Cang;Jang Jin
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.354-359
    • /
    • 2006
  • Recently, the interest in lithography without photo exposure has been increased compare to the conventional photolithography in nano meter and micrometer size patterning area. We studied a self aligned dipping of Ag solution through micro contact printing (${\mu}-CP$) with octadecyltrichlorosilane (OTS) treated polydimethylsiloxane (PDMS) soft mold. The OTS monolayer on the patterned PDMS was formed by dipping it into OTS solution. We transferred the OTS monolayer from PDMS mold to the glass. The OTS monolayer changed the surface energy from hydrophilic surface to hydrophobic surface, And then we made self aligned Ag solution patterns just after dipping the substrate, using adhesion difference of Ag solution between OTS treated hydrophobic area and non-OTS treated hydrophilic area. We finally get the Ag patterns through only dip-coating after the ${\mu}-CP$ process. And we observed surface energies on the glass substrate through the contact angle measurements as time goes on.

Volume Transport on the Texas-Louisiana Continental Shelf

  • Cho Kwang-Woo
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.1
    • /
    • pp.48-62
    • /
    • 1998
  • Seasonal volume transport on the Texas-Louisiana continental shelf is investigated in terms of objectively fitted transport streamfunction fields based on the current meter data of the Texas­Louisiana Shelf Circulation and Transport Processes Study. Adopted here for the objective mapping is a method employing a two-dimensional truncated Fourier representation of the streamfunction over a domain, with the amplitudes determined by least square fit of the observation. The fitting was done with depth-averaged flow rather than depth-integrated flow to reduce the root-mean-square error. The fitting process filters out $11\%$ of the kinetic energy in the monthly mean transport fields. The shelf-wide pattern of streamfunction fields is similar to that of near-surface velocity fields over the region. The nearshore transport, about 0.1 to 0.3 Sv $(1 Sv= 10^6\;m^3/sec)$, is well correlated with the seasonal signal of along-shelf wind stress. The spring transport is weak compared to other seasons in the inner shelf region. The transport along the shelf break is large and variable. In the southwestern shelf break, transport amounts up to 4.7 Sv, which is associated with the activities of the encroaching of energetic anticyclonic eddies originated in Loop Current of the eastern Gulf of Mexico. The first empirical orthogonal function (EOF) of streamfunction variability contains $67.3\%$ of the variance and shows a simple, shelf-wide, along-shelf pattern of transport. The amplitude evolution of the first EOF is highly correlated (correlation coefficient: 0.88) with the evolution of the along-shelf wind stress. This provides strong evidence that the large portion of seasonal variation of the shelf transport is wind-forced. The second EOF contains $23.7\%$ of the variance and shows eddy activities at the southwestern shelf break. The correlation coefficient between the amplitudes of the second EOF and wind stress is 0.42. We assume that this mode is coupled a periodic inner shelf process with a non-periodic eddy process on the shelf break. The third EOF (accounting for $7.2\% of the variance) shows several cell structures near the shelf break associated with the variability of the Loop Current Eddies. The amplitude time series of the third EOF show little correlation with the along-shelf wind.

  • PDF

INTENSITY AND DOPPLER VELOCITY OSCILLATIONS IN PORE ATMOSPHERE

  • Cho, Kyung-Suk;Bong, Su-Chan;Nakariakov, Valery;Lim, Eun-Kyung;Park, Young-Deuk;Chae, Jongchul;Yang, Heesu;Park, Hyung-Min;Yurchyshyn, Vasyl
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.98-98
    • /
    • 2014
  • Due to the simple vertical structure of magnetic field, pores can be exploited to study the transport of mechanical energy by waves along the magnetic field to the chromosphere and corona. For a better understanding of physics of pores, we have investigated chromospheric traveling features running across two merged pores from their centers at the speed about 55 km s-1, in the active region AR 11828. The pores were observed on 2013 August 24 by using high time, spatial, and spectral resolution data from the Fast Imaging Solar Spectrograph (FISS) of the 1.6 meter New Solar Telescope (NST). We infer a LOS velocity by applying the bisector method to the Ca II $8542{\AA}$ band and $H{\alpha}$ band, and investigate intensity and the line-of-sight velocity changes at different wavelengths and different positions at the pores. We find that they have 3 minutes oscillations, and the intensity oscillation from the line center is preceded by that from the core ($-0.3{\AA}$) of the bands. There is no phase difference between the intensity and the LOS velocity oscillations at a given wavelength. The amplitude of LOS velocity from near the core spectra is greater than that from the far core spectra. These results support the interpretation of the observed wave as a slow magnetoacoustic wave propagating along the magnetic field lines in the pores. The apparent horizontal motion and a sudden decrease of its speed beyond the pores can be explained by the projection effect caused by inclination of the magnetic field with a canopy.

  • PDF

The Analysis of heating performance of heat pump system for agricultural facility using underground air in Jeju area - Focused on the Jeju Area - (제주지역 지하공기를 이용한 농업시설용 히트펌프시스템의 난방 성능 분석 - 제주지역을 중심으로 -)

  • Kang, Youn-Ku;Lim, Tae-Sub
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.109-114
    • /
    • 2016
  • Purpose: The underground air is the warm air discharged from the porous volcano bedrock 30-50m underground in Jeju, including excessive humidity. The temperature of the underground air is $15-20^{\circ}C$ throughout the year. In Jeju, the underground air was used for heating greenhouses by supplying into greenhouses directly. This heating method by supplying the underground air into greenhouses directly had several problems. The study was conducted to develop the heat pump system using underground air as heat source for resolving excessive humidity problem of the underground air, adopting the underground air as a farm supporting project by Ministry of Agriculture, Food and Rural Affairs(MAFRA) and saving heating cost for agricultural facilities. Method: 35kW scale(10 RT) heat pump system using underground air installed in a greenhouse of area $330m^2$ in Jeju-Special Self-Governing Province Agricultural Research & Extension Services, Seogwipo-si, Jeju. The inlet and outlet water temperature of the condenser, the evaporator and the thermal storage tank and the underground air temperature and the air temperature in the greenhouse were measured by T type thermocouples. The data were collected and saved in a data logger(MV200, Yokogawa, Japan). Flow rates of water flowing in the condenser, the evaporator and the thermal storage tank were measured by an ultrasonic flow meter(PT868, Panametrics, Norway). The total electric power that consumed by the system was measured by a wattmeter(CW240, Yokogawa, Japan). Heating COP, rejection heat of condenser, extraction heat of evaporator and heating cost were analyzed. Result: The underground air in Jeju was adopted as a farm supporting project by Ministry of Agriculture, Food and Rural Affairs(MAFRA) in 2010. From 2011, the heat pump systems using underground air as a heat source were installed in 12 farms(16.3ha) in Jeju.

Analysis of Apartment Power Consumption and Forecast of Power Consumption Based on Deep Learning (공동주택 전력 소비 데이터 분석 및 딥러닝을 사용한 전력 소비 예측)

  • Yoo, Namjo;Lee, Eunae;Chung, Beom Jin;Kim, Dong Sik
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1373-1380
    • /
    • 2019
  • In order to increase energy efficiency, developments of the advanced metering infrastructure (AMI) in the smart grid technology have recently been actively conducted. An essential part of AMI is analyzing power consumption and forecasting consumption patterns. In this paper, we analyze the power consumption and summarized the data errors. Monthly power consumption patterns are also analyzed using the k-means clustering algorithm. Forecasting the consumption pattern by each household is difficult. Therefore, we first classify the data into 100 clusters and then predict the average of the next day as the daily average of the clusters based on the deep neural network. Using practically collected AMI data, we analyzed the data errors and could successfully conducted power forecasting based on a clustering technique.

Properties of the Master Alloys for White Gold Products with Silicon Contents (백색금 합금용 모합금의 실리콘 함량에 따른 물성변화)

  • Song, Jeongho;Noh, Yunyoung;Lee, Hyeonwoo;Choi, Minkyoung;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.90-94
    • /
    • 2015
  • We prepared 8 samples of non-silver and silver-added master alloys containing silicon to confirm the existence of nickel-silicides. We then prepared products made of 14K and 18K white gold by using the prepared master alloys containing 0.25, 0.35, and 0.50 wt% silicon to check for nickel release. We then employed the EN 1811 testing standard to investigate the nickel release of the white gold products, and we also confirmed the color of the white gold products with an UV-VIS-NIR-color meter. We observed $NiSi_x$ residue in all master alloys containing more than 0.50 wt% Si with EDS-nitric acid etching. For the white gold products, we could not confirm the existence of $NiSi_x$ through XRD after aqua-regia etching. In the EN 1811 test, only the white gold products with 0.25 wt% silicon master alloys successfully passed the nickel release regulations. Moreover, we confirmed that our white gold products showed excellent Lab indices as compared to those of commercial white gold ones, and the silver-added master alloys offered a larger L index. Our results indicate that employing 0.25 wt% silicon master alloys might be suitable for white gold products without nickel-silicide defects and nickel release problems.

Extraction of Three-dimensional Hybrid City Model based on Airborne LiDAR and GIS Data for Transportation Noise Mapping (교통소음지도 작성을 위한 3차원 도시모델 구축 : 항공 LiDAR와 GIS DB의 혼용 기반)

  • Park, Taeho;Chun, Bumseok;Chang, Seo Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.985-991
    • /
    • 2014
  • The combined method utilizing airborne LiDAR and GIS data is suggested to extract 3-dimensional hybrid city model including roads and buildings. Combining the two types of data is more efficient to estimate the elevations of various types of roads and buildings than using either LiDAR or GIS data only. This method is particularly useful to model the overlapped roads around the so called spaghetti junction. The preliminary model is constructed from the LiDAR data, which can give wrong information around the overlapped parts. And then, the erratic vertex points are detected by imposing maximum vertical grade allowable on the elevated roads. For the purpose of efficiency, the erratic vertex points are corrected through linear interpolation method. To avoid the erratic treatment of the LiDAR data on the facades of buildings 2 meter inner-buffer zone is proposed to efficiently estimate the height of a building. It is validated by the mean value(=5.26 %) of differences between estimated elevations on 2 m inner buffer zone and randomly observed building elevations.

Nitrogen Management with Split Application of Urea for Direct-Seeding Rice in Wet Paddy

  • Lee, Ho-Jin;Seo, Jun-Han;Lee, Jung-Sam;Jung, Yong-Sang;Fred E. Below
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.1
    • /
    • pp.49-53
    • /
    • 1998
  • Direct-seeding has major advantages such as labor and cost saving by eliminating preparation of seed bed and transplanting. But, it required increased input of fertilizers and pesticides because of the extended paddy period. Direct seeding in wet paddy (DSWP) gives faster growth and more uniform seedling emergence than direct-seeding in dry paddy. This research had an objective to develop an efficient N management practices for DSWP with split application of N fertilizer. A paddy field experiment was conducted to evaluate effects of starter N and N-topdressing which was delayed N application until 5-leaf stage, with comparison to transplanting (TP). Total amount of N application were two levels; 110kg and 77kg/ha. The N applications were split four times during rice growth stages; starter, topdressing at 5-leaf stage, top dressing at tillering stage, and topdressing at panicle initiation stage. DSWP had more tillers/$m^2$ than TP, but with the delayed heading. The DSWP plots which received N-topdressing at 5-leaf stage without starter N had higher leaf area index (LAI) and leaf greenness than the TP plot. Also, these DSWP plots had high leaf-N concentration at the heading stage, as calculated from leaf chlorophyll meter readings. Rice yield in DSWP with N-topdressing at 5-leaf stage was significantly higher than that in TP and in DSWP with starter N. Energy and N use efficiency were improved in DSWP with N-topdressing at 5-leaf stage. But, there were no significant differences in grain yield between the two levels of total amounts of N applications, 77kg and 110kg/ha. We concluded that starter N could not be used effectively by rice seedlings, but topdressing N at 5-leaf stage was an efficient N management for rice growth and yield in DSWP system.

  • PDF

Design of wireless sensor network and its application for structural health monitoring of cable-stayed bridge

  • Lin, H.R.;Chen, C.S.;Chen, P.Y.;Tsai, F.J.;Huang, J.D.;Li, J.F.;Lin, C.T.;Wu, W.J.
    • Smart Structures and Systems
    • /
    • v.6 no.8
    • /
    • pp.939-951
    • /
    • 2010
  • A low-cost wireless sensor network (WSN) solution with highly expandable super and simple nodes was developed. The super node was designed as a sensing unit as well as a receiving terminal with low energy consumption. The simple node was designed to serve as a cheaper alternative for large-scale deployment. A 12-bit ADC inputs and DAC outputs were reserved for sensor boards to ease the sensing integration. Vibration and thermal field tests of the Chi-Lu Bridge were conducted to evaluate the WSN's performance. Integral acceleration, temperature and tilt sensing modules were constructed to simplify the task of long-term environmental monitoring on this bridge, while a star topology was used to avoid collisions and reduce power consumption. We showed that, given sufficient power and additional power amplifier, the WSN can successfully be active for more than 7 days and satisfy the half bridge 120-meter transmission requirement. The time and frequency responses of cables shocked by external force and temperature variations around cables in one day were recorded and analyzed. Finally, guidelines on power characterization of the WSN platform and selection of acceleration sensors for structural health monitoring applications were given.

Interfacial Durability and Acoustic Properties of Transparent xGnP/PVDF/xGnP Graphite Composites Film for Acoustic Actuator (음향 작동기를 위한 투명한 xGnP/PVDF/xGnP 그래핀 복합재료 필름의 계면 내구성 및 음향 특성)

  • Gu, Ga-Young;Wang, Zuo-Jia;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.25 no.3
    • /
    • pp.70-75
    • /
    • 2012
  • Interfacial durability and electrical properties of CNT, ITO or xGnP coated PVDF nanocomposites were investigated for acoustic actuator applications. The xGnP coated PVDF nanocomposite exhibited better electrical conductivity than CNT and ITO case due to the unique electrical property of xGnP, and this nanocomposite also showed good sound characteristics. Interfacial adhesion durability between either neat CNT or plasma treated CNT and plasma treated PVDF were measured by static contact angle, surface energy, work of adhesion, and spreading coefficient tests. The optimum acoustic actuation performance of xGnP coated PVDF nanocomposite was measured using sound level meter with changing radius of curvature and coating conditions. As compared to CNT and ITO, the xGnP was known as more appropriate acoustic actuator due to the characteristic electrical property. It is the most appropriate condition when the radius of curvature is 15 degree. Although sound characteristics were different with various coating thicknesses, it is possible to manufacture transparent actuator with good sound quality.