• Title/Summary/Keyword: Energy measurement

Search Result 3,939, Processing Time 0.037 seconds

Assessment of Radiation Dose from Radioactive Wedge Filters during High-Energy X-Ray Therapy

  • Back, Geum-mun;Park, Sung Ho;Kim, Tae-Hyung
    • Progress in Medical Physics
    • /
    • v.28 no.2
    • /
    • pp.45-48
    • /
    • 2017
  • This paper evaluated the amount of radiation generated by wedge filters during radiation therapy using a high-energy linear accelerator, and the dose to the worker during wedge replacement. After 10-MV photon beam was irradiated with wedge filter, the wedge was removed from the linear accelerator, and the dose rate and energy spectrum were measured. The initial measurement was approximately 1 uSv/h, and the radiation level was reduced to 0.3 uSv/h after 6 min. The effective half-life derived from the dose rate measurement was approximately 3.5 min, and the influence of AI-28 was about 53%. From the energy spectrum measurements, a peak of 1,799 keV was measured for AI-28, while the peak for Co-58 was not measured in the control room. The peaks for Au-106 and Cd-105 were found only measurement was done without wedge removement from the linear accelerator. The additional doses received by the radiation worker during wedge replacement were estimated to be 0.08-0.4 mSv per year.

An ionization Chamber for a Steel Sheet Thickness Measurement

  • Kim, Han-Soo;Park, Se-Hwa;Kim, Yong-Kyun;Ha, Jang-Ho;Cho, Seung-Yeon
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.3
    • /
    • pp.149-153
    • /
    • 2006
  • An ionization chamber is still widely used in many fields by virtue of its' simple operational characteristics and the possibility of its' various shapes. A parallel type of an ionization chamber for a steel sheet thickness measurement was designed and fabricated. High pure xenon gas, which was pressurized up to 6 atm, was chosen as a filling gas to increase the current response and sensitivity for a radiation. A high pressure gas system was also constructed. The active volume and the incident window size of the fabricated ionization chamber were $30\;cm^3\;and\;12\;cm^2$, respectively. Preliminary tests with a 25 mCi $^{241}Am$ gamma-ray source and evaluation tests in a standard X-ray field were performed. The optimal operation voltage was set from the results of the collection efficiency calculation by using an experimental two-voltage method. Linearity for a variation of the steel sheet thickness, which is the most important factor for an application during a steel sheet thickness measurement, was 0.989 in this study.

Cooling Performance Analysis of Ground-Source Heat Pump System with Capacity Control with Outdoor Air Temperature (외기 온도 제어 방식을 적용한 지열 히트펌프 시스템의 냉방 성능 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.4
    • /
    • pp.68-78
    • /
    • 2021
  • In order to solve the increasing deterioration of the energy shortage problem, ground-source heat pump (GSHP) systems have been widely installed. The control method is a significant component for maintaining the long-term performance and for reducing operation cost of GSHP systems. This paper presents the measurement and analysis results of the cooling performance of a GSHP system using capacity control with outdoor air temperature. For this, we installed monitoring equipments including sensors for measuring temperature, flow rate and power consumption, and then monitored operation parameters from July 9, 2021 to October 2, 2021. From measurement results, we analyze the effect of capacity control with outdoor air temperature on the cooling performance of the system. The average performace factor (PF) of the heat pump was 6.95, while the whole system was 5.54 over the measurement period. Because there was no performance data of the existing GSHP system, it was not possible to directly compare the existing control method and the outdoor air temperature method. However, it is expected that the performance of the entire system will be improved by adjusting the temperature of cold water produced by the heat pump, that is, the temperature of cold water on the load side according to the outside air temperature.

Development of Light Transmission Fluctuation for Particle Measurement in Solid-Gas Two Phase Flows

  • YANG, Bin;WANG, Zhan-ping;HE, Yuan;CAI, Xiao-Shu
    • Particle and aerosol research
    • /
    • v.12 no.1
    • /
    • pp.21-26
    • /
    • 2016
  • In order to realize In-line and convenient measurement for solid-gas two phase flows, Light Transmission Fluctuation (LTF) based on the random variation of transmitted light intensity, light scattering theory and cross-correlation method was presented for online measurement of particle size, concentration and velocity. The statistical relationship among transmitted light intensity, particle size and particle number in measurement zone was described by Beer-Lambert Law. Accordingly, the particle size and concentration were determined from the fluctuation signal of transmitted light intensity. Simultaneously, the particle velocity was calculated by cross-correlation analysis of two neighboring light beams. By considering the influence of concentration variation in industrial applications, the improved algorithm based on spectral analysis of transmitted light intensity was proposed to improve measurement accuracy and stability. Therefore, the online measurement system based on LTF was developed and applied to measure pulverized coal in power station and raw material in cement plant. The particle size, concentration and velocity of powder were monitored in real-time. It can provide important references for optimal control, energy saving and emission reduction of energy-intensive industries.

Development of Flux Mapping Technique for the Solar Power Tower Plant (타워형 태양열발전을 위한 열유속 분포 측정기술 개발)

  • Chai, Kwan-Kyo;Lee, Hyun-Jin;Kim, Jong-Kyu;Yoon, Hwan-Ki;Lee, Sang-Nam;Kang, Yong-Heack;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.274-279
    • /
    • 2012
  • Daegu Solar Power Tower Plant of 200 kW thermal capacity was developed for the first time in Korea, 2011. Measurement of the heat flux distribution is essential to evaluate the solar energy concentrated by reflectors and to design a suitable receiver. The flux mapping technique, which uses a radiometer and a diffuse plate, is common for measurement of the heat flux distribution. Because the solar power tower plant has a wide concentration area, the flux mapping technique using a fixed diffuse plate is difficult to apply. Therefore, the flux distribution in the solar power tower plant should be measured by the flux mapping technique using a small moving bar. In this study, we measured flux distributions with the moving-bar system developed at the KIER solar furnace and evaluated its applicability for the solar power tower plant.

  • PDF

Evaluation of the Performance and the Energy Consumption Characteristics of Heat Recovery Ventilators in Apartments (공동주택 열교환기의 성능 및 에너지소비 특성 평가)

  • Kim Sang-Min;Park Byung-Yoon;Sohn Jang-Yeul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.496-504
    • /
    • 2005
  • Heat recovery ventilators (HRV) are developed in order to satisfy both energy conservation and the improvement of indoor air quality as an alternative for current natural ventilation systems and local mechanical ventilation systems in kitchens and bathrooms. However, the performance of HRV system and the consequent effect on heating and cooling energy saving have not been sufficiently validated quantitatively in case of the application of HRVs in real residences. In this study, field measurement and computer simulation were conducted in both summer and winter period to assess the performance and validate energy conservation effect of HRVs. Under the Korea weather condition, average total heat recovery efficiency was $27\%$ in summer and $46\%$ in winter. According to the field measurement, HRV system can save the energy by $10\%$ in summer and 15$\%$ in winter. Furthermore, according to the simulation assessment, HRV system can save the energy by $17\%$ in summer and $17\%$ in winter.

A Measurement of Proton Beam Energy using Carbon Target for Medical Cyclotron (탄소 표적물을 사용한 의료용 싸이클로트론의 양성자 에너지 측정)

  • Chai, Jong-Seo;Ha, Jang-Ho;Kim, Yu-Seok;Lee, Dong-Hun;Lee, Min-Yong;Hong, Seong-Seok
    • The Korean Journal of Nuclear Medicine
    • /
    • v.29 no.3
    • /
    • pp.350-354
    • /
    • 1995
  • 한국 원자력 연구소 부설 원자력병원에 설치된 AVF 싸이클로트론을 이용하여 요즈음 핵의학에 널리 사용되는 PET 용 싸이클로트론의 에너지를 검정 할 수 있고 양성자 과잉 핵종인 싸이클로트론 동위원소의 생산 수율에 중요한 변수인 양성자에너지를 탄소에 입사시켜 입사빔의 Range와 에너지를 측정하는 방법을 제시하였다. 본 실험에서 사용된 양성자 빔의 양성자 에너지는 35 MeV와 50 MeV 사이였으며, 탄소 막은 두께 6.3mm, 밀도 $1.712 g/cm^3$를 사용하였다. 탄소 표적물을 $0.9^{\circ}$씩 스텝 모터를 사용하여 회전시킴으로 두께를 변화 시켜 공칭 에너지에 대한 Range를 측정함으로써 입사된 양성자의 에너지를 구하였고 이를 인출반경과 RF주파수를 바탕으로 상대론 적으로 계산된 에너지와 비교하였다.

  • PDF

Measurements of low dose rates of gamma-rays using position-sensitive plastic scintillation optical fiber detector

  • Song, Siwon;Kim, Jinhong;Park, Jae Hyung;Kim, Seunghyeon;Lim, Taeseob;Kim, Jin Ho;Kim, Sin;Lee, Bongsoo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3398-3402
    • /
    • 2022
  • We fabricated a 15 m long position-sensitive plastic scintillation optical fiber (PSOF) detector consisting of a PSOF, two photomultiplier tubes, four fast amplifiers, and a digitizer. A single PSOF was used as a sensing part to estimate the gamma-ray source position, and 137Cs, an uncollimated solid-disk-type radioactive isotope, was used as a gamma-ray emitter. To improve the sensitivity, accuracy, and measurement time of a PSOF detector compared to those of previous studies, the performance of the amplifier was optimized, and the digital signal processing (DSP) was newly designed in this study. Moreover, we could measure very low dose rates of gamma-rays with high sensitivity and accuracy in a very short time using our proposed PSOF detector. The results of this study indicate that it is possible to accurately and quickly locate the position of a very low dose rate gamma-ray source in a wide range of contaminated areas using the proposed position-sensitive PSOF detector.

Analysis of Charge and Discharge Characteristics of Heavy Duty Electric Commercial Vehicle Batteries (중대형 전기 상용차 배터리의 주행중 충방전 특성 분석)

  • Song, Jingeun;Cha, Junepyo
    • Journal of Institute of Convergence Technology
    • /
    • v.11 no.1
    • /
    • pp.19-23
    • /
    • 2021
  • These days, sales of battery electric vehicles have been rapidly increasing due to the strict CO2 regulations. However, since it take too long to measure the energy economy of electric vehicles, it has been required to improve the procedure of energy economy measurement. In order to improve this problem, the present study analyzed the battery charge/discharge pattern according to the changes in battery SOC (state of charge). In general, the energy economy test is started with a battery SOC charged to 100 %. However, it was identified that when the battery is fully charged, it can actually be charged over the 100 % (e.g., 100.5 %). This can induce errors in the energy economy measurement. Therefore, the present study recommend to start the test at SOC 99.9 %. The regenerative braking was partly restricted for the SOC over 90 %. This made it difficult to estimate the overall energy economy of the electric vehicle. However, it was identified that there was no change in the battery charge/discharge characteristics under the SOC 90 %. Therefore, the energy economy test can be shortened by predicting the overall energy economy through a short mileage test.

Implementation of Acoustic Properties Measurement System Based on LabVIEW Using PXI for Marine Sediment (PXI를 이용한 LabVIEW기반 해양퇴적물의 음향특성 측정시스템 개발)

  • Park, Ki-Ju;Kim, Dae-Choul;Lee, Gwang-Soo;Bae, Sung Ho;Kim, Gil Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.216-222
    • /
    • 2015
  • A previous velocity measurement system for marine sediment had several problems such as the errors occurred when picking first arrival time and the inconvenient measurement procedure. In order to resolve these problems, we developed a new acoustic properties measurement system by using PXI (PCI eXtentions for Instrumentation) module based on LabVIEW. To verify the new system, we measured the velocity and attenuation of sediment using the new system in a parallel with the previous system under the same experimental environment. The result of measurement showed 1~2% margin of error for the velocity as well as similar attenuation values. We concluded that the new system can efficiently measure the acoustic properties of marine sediment. It also has an advantage to construct the database of acoustic data and raw signal.