• Title/Summary/Keyword: Energy maps

Search Result 193, Processing Time 0.026 seconds

Electromagnetic Interference of GMDSS MF/HF Band by Offshore Wind Farm (해상풍력 발전단지에 의한 GMDSS MF/HF 대역 전자파 간섭 영향 연구)

  • Oh, Seongwon;Park, Tae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.47-52
    • /
    • 2021
  • Recently, the share of wind power in energy markets has sharply increased with the active development of renewable energy internationally. In particular, large-scale wind farms are being developed far from the coast to make use of abundant wind resources and to reduce noise pollution. In addition to the electromagnetic interference (EMI) caused by offshore wind farms to coastal or air surveillance radars, it is necessary to investigate the EMI on global maritime distress and safety system (GMDSS) communications between ship and coastal stations. For this purpose, this study investigates whether the transmitted field of MF/HF band from a ship would be subject to interference or attenuation below the threshold at a coastal receiver. First, using geographic information system digital maps and 3D CAD models of wind turbines, the area of interest is electromagnetically modeled with patch models. Although high frequency analysis methods like Physical Optics are appropriate to analyze wide areas compared to its wavelength, the high frequency analysis method is first verified with an accurate low frequency analysis method by simplifying the surrounding area and turbines. As a result, the received wave power is almost the same regardless of whether the wind farms are located between ships and coastal stations. From this result, although wind turbines are large structures, the size is only a few wavelengths, so it does not interfere with the electric field of MF/HF distress communications.

Characterization of coated colorless synthetic moissanite (코팅된 무색 합성 모이사나이트의 특징)

  • Choi, Hyunmin;Kim, Youngchool;Jang, Hansoo;Seok, Jeongwon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.1
    • /
    • pp.7-11
    • /
    • 2022
  • Recently, Hanmi Gemological Institute & Laboratory (HGI) had an opportunity to examine 5 transparent synthetic moissanite. The round brilliants ranged from 0.93 to 0.96 ct and had a colorless, pink, yellow, blue, and red color. Advanced testing results, including Fourier-transform infrared (FTIR) and Raman spectroscopy, identified all the specimens as synthetic moissanite. Under the microscope, all samples except the colorless were confirmed to be a synthetic moissanite coated with a colored film. EDXRF chemical analysis detected very weak X-ray fluorescence peak characteristics of Ca, Ti, and Co in the colored samples. These features were not detected in the colorless sample. Raman spectroscopy investigation was unable to detect the 1332 cm-1 (produced by sp3 bonding of carbon atoms) or the ~1550 cm-1 (produced by graphite-related sp2 bonding) peak in the colorless sample. The SEM image of the colorless sample showed no indication of a coating. The TEM image of the colorless sample revealed the presence of a 3~8 nm thick layer on the moissanite. Moreover, from the corresponding STEM Z-contrast image combined with the energy-dispersive X-ray spectroscopy (EDX) line profiles and EDX elemental maps, this layer was estimated to be carbon, silicon and oxygen.

An Analysis of Ecological Footprint of Yong-in City (용인시 생태발자국 지수의 분석과 고찰 - 음식, 건조환경, 산림, 에너지 부문을 중심으로 -)

  • Park, Ji Young;Kim, Jin-Oh
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • The purpose of this study is to analyze the change of environmental capacity in Yong-in City, Gyeonggi-do, South Korea through calculation of ecological footprint indices and analysis of their changes, and to suggest implications for urban development and planning. In this study, we analyzed ecological footprints of 1993, 2003, and 2013 to understand the patterns of land use changes and development in Yong-in City. We also compared the GIS land cover maps and ecological footprint indices to figure out land cover changes associated with resource consumption in Yong-in City. As a result, we found the following three lessons. First, the ecological footprint indices of Yong-in City are 3.20(gha) in 1993, 6.50(gha) in 2003, and 11.15(gha) in 2013. This implies that the ecological footprint of Yong-in City is much larger than 1.80(gha), the globally required ecological footprint per capita and 3.56(gha), the average ecological footprint of South Korea. Second, the forest ecological footprint of Yong-in City was calculated as the largest, followed by the ecological footprints of energy, food, and built environment. In particular, the forest ecological footprint was the most rapidly increased from 0.002(gha) in 1993 to 7.32(gha) in 2013, followed by energy ecological footprint from 0.87(gha) to 2.38(gha). This implies that the provision and consumption of timber are seriously unbalanced, and energy consumption is unsustainable because of the rapid increase of residential and commercial land development in the city. Third, our analysis of the rapid increase of forest ecological footprint indicates that the disturbed forest areas are concentrated in the increased built environment areas. We also observed that the increase of energy ecological footprint indices was caused largely by the increase of the commercial and road areas. This implies that Yong-in City should minimize forest disturbance and expand green areas for future in the city. In addition, this may provide a reasonable ground that the city should reduce the use of fossil fuels and facilitate the use of renewable energy.

A Study on the Locational and Spatial Characteristics of Lotus Ponds of Fortress Wall of Seoul(漢陽都城) during the Joseon Dynasty (조선시대 한양도성 연지(蓮池)의 입지 및 공간적 특성 고찰)

  • Gil, Ji-Hye;Son, Yong-Hoon;Hwang, Kee-Won
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.33 no.4
    • /
    • pp.38-51
    • /
    • 2015
  • In the maps of the period, there were three large ponds called Dongji(東池), Seoji(西池) and Namji(南池) in Hanyang, the capital of Joseon Dynasty. They were different than the ponds found in the palace, civic buildings, and private dwellings. Dongji, Seoji and Namji were ponds relating to Fortress wall of Seoul, and all had lotuses cultivated in them. The purpose of this paper is to clarify the locational and spatial characteristics of these ponds and to detail the construction and reconstruction process and management conditions through maps, drawings, illustrations, historical records and literary works from the urban environmental perspective. The results are as follows. First, Seoji and Namji were intended for Bibo(裨補) which redeemed the geographical weaknesses of Hanyang, securement of bright court water(明堂水), supplement for fire energy(火氣), fire preventive water and waterscape facilities, while Dongji was emphasized on protecting water mouth(水口) besides Bibo and securement of bright court water. Second, Seoji was connected to mountain streams and Dongji and Namji were to ditches. The ponds connected to ditches had been difficult to fill and maintain. Third, Seoji and Namji were in urban areas, whereas Dongji was in farmlands, and these locational differences had an influence on the use of ponds. Fourth, the shapes of ponds, in contrast to the ponds in palace and civic buildings, which were perfectly square, were either freeform or square with rounded edges. Fifth, lotus ponds could be maintained by continuous management polices, earth filling and reconstructing process were repeated during the Joseon Dynasty. The lotus ponds of Fortress Wall of Seoul which had managed over 500 years, were built in, in accordance with the tenets of Bibo pungsu geomancy; however as time passed, they were maintained not only as public open spaces, but also a cultural attraction for residents and visitors.

Analysis of Emerging Geo-technologies and Markets Focusing on Digital Twin and Environmental Monitoring in Response to Digital and Green New Deal (디지털 트윈, 환경 모니터링 등 디지털·그린 뉴딜 정책 관련 지질자원 유망기술·시장 분석)

  • Ahn, Eun-Young;Lee, Jaewook;Bae, Junhee;Kim, Jung-Min
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.609-617
    • /
    • 2020
  • After introducing the industry 4.0 policy, Korean government announced 'Digital New Deal' and 'Green New Deal' as 'Korean New Deal' in 2020. We analyzed Korea Institute of Geoscience and Mineral Resources (KIGAM)'s research projects related to that policy and conducted markets analysis focused on Digital Twin and environmental monitoring technologies. Regarding 'Data Dam' policy, we suggested the digital geo-contents with Augmented Reality (AR) & Virtual Reality (VR) and the public geo-data collection & sharing system. It is necessary to expand and support the smart mining and digital oil fields research for '5th generation mobile communication (5G) and artificial intelligence (AI) convergence into all industries' policy. Korean government is suggesting downtown 3D maps for 'Digital Twin' policy. KIGAM can provide 3D geological maps and Internet of Things (IoT) systems for social overhead capital (SOC) management. 'Green New Deal' proposed developing technologies for green industries including resource circulation, Carbon Capture Utilization and Storage (CCUS), and electric & hydrogen vehicles. KIGAM has carried out related research projects and currently conducts research on domestic energy storage minerals. Oil and gas industries are presented as representative applications of digital twin. Many progress is made in mining automation and digital mapping and Digital Twin Earth (DTE) is a emerging research subject. The emerging research subjects are deeply related to data analysis, simulation, AI, and the IoT, therefore KIGAM should collaborate with sensors and computing software & system companies.

Topographic Factors Computation in Island: A Comparison of Different Open Source GIS Programs (오픈소스 GIS 프로그램의 지형인자 계산 비교: 도서지역 경사도와 지형습윤지수 중심으로)

  • Lee, Bora;Lee, Ho-Sang;Lee, Gwang-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.903-916
    • /
    • 2021
  • An area's topography refers to the shape of the earth's surface, described by its elevation, slope, and aspect, among other features. The topographical conditions determine energy flowsthat move water and energy from higher to lower elevations, such as how much solar energy will be received and how much wind or rain will affect it. Another common factor, the topographic wetness index (TWI), is a calculation in digital elevation models of the tendency to accumulate water per slope and unit area, and is one of the most widely referenced hydrologic topographic factors, which helps explain the location of forest vegetation. Analyses of topographical factors can be calculated using a geographic information system (GIS) program based on digital elevation model (DEM) data. Recently, a large number of free open source software (FOSS) GIS programs are available and developed for researchers, industries, and governments. FOSS GIS programs provide opportunitiesfor flexible algorithms customized forspecific user needs. The majority of biodiversity in island areas exists at about 20% higher elevations than in land ecosystems, playing an important role in ecological processes and therefore of high ecological value. However, island areas are vulnerable to disturbances and damage, such as through climate change, environmental pollution, development, and human intervention, and lacks systematic investigation due to geographical limitations (e.g. remoteness; difficulty to access). More than 4,000 of Korea's islands are within a few hours of its coast, and 88% are uninhabited, with 52% of them forested. The forest ecosystems of islands have fewer encounters with human interaction than on land, and therefore most of the topographical conditions are formed naturally and affected more directly by weather conditions or the environment. Therefore, the analysis of forest topography in island areas can be done more precisely than on its land counterparts, and therefore has become a major focus of attention in Korea. This study is focused on calculating the performance of different topographical factors using FOSS GIS programs. The test area is the island forests in Korea's south and the DEM of the target area was processed with GRASS GIS and SAGA GIS. The final slopes and TWI maps were produced as comparisons of the differences between topographic factor calculations of each respective FOSS GIS program. Finally, the merits of each FOSS GIS program used to calculate the topographic factors is discussed.

Priority Decision of Small Hydropower Development using Spatial Multi-Criteria Decision Making (공간 다기준의사결정을 활용한 소수력 개발의 우선순위 결정)

  • Kim, Gil-Ho;Yi, Choong-Sung;Yeo, Gyu-Dong;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.12
    • /
    • pp.1029-1038
    • /
    • 2009
  • Recently, it is expected that small hydropower (SHP) could potentially provide sufficient amounts of alternative energy in Korea where there is an abundance of potential sites and where social efforts are being made to reduce the emissions of green house gases. In the past, the resources survey for SHP development has been carried out using onsite surveys and paper maps, which incurred a great deal of time and cost. Furthermore, the tools for decision making such as determining development priorities or evaluating feasibility have been considered only economic aspect and focused on the performance characteristics of power generation. However, as the concept of sustainable development has been being advanced in recent years, especially focused on human-social, environmental and ecological in addition to economical sector; the consideration of these multiple criteria has become essential for sustainable SHP development. This study aims to propose the spatial multi-criteria decision making (MCDM) methodology for determining priorities among a number of locations on the planning stage of SHP development using AHP and GIS. The proposed methodology is applied for determining development priorities among the SHP locations in Cho River basin and this study presents the detailed spatial information data and the results of development priorities. As a fundamental work, this study will be beneficial to the future activation of SHP development and will help the decision making in evaluating the feasibility of SHP development.

Physicochemical Properties of Indoor Particulate Matter Collected on Subway Platforms in Japan

  • Ma, Chang-Jin;Matuyama, Sigeo;Sera, Koichiro;Kim, Shin-Do
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.73-82
    • /
    • 2012
  • This study was aimed to thoroughly estimate the characteristics of indoor particulate matter (PM) collected on subway platforms by the cooperative approach of semi-bulk and single particle analyses. The size-resolved PM and its number concentration were measured on the platform in a heavily traveled subway station in Fukuoka, Japan. Particle Induced X-ray Emission (PIXE) and micro-PIXE techniques were applied to the chemical analyses of semi-bulk and single particle, respectively. There was the close resemblance of timely fluctuation between PM number concentration and train service on the third basement floor (B3F) platform compared to the second basement floor (B2F) and its maximum level was marked in rush hour. Higher number counts in large particles ($>1{\mu}m$) and lower number counts in fine particles ($<1{\mu}m$) were shown on the platform compared to an above ground. PM2.5 accounted for 58.2% and 38.2 % of TSP on B3F and on B2F, respectively. The elements that were ranked at high concentration in size-resolved semi-bulk PM were Fe, Si, Ca, S, and Na. The major elements tending to have more elevated levels on B3F than B2F were Fe (4.4 times), Ca (17.3 times), and Si (46.4 times). Although concentrations were very low, Cr ($11.9ng\;m^{-3}$ on B3F, $2.4ng\;m^{-3}$ on B2F), Mn ($3.4ng\;m^{-3}$ on B3F, $0.9ng\;m^{-3}$ on B2F), and Pb ($0.6ng\;m^{-3}$ on B3F, $1.6ng\;m^{-3}$ on B2F) were detected from PM2.5. Individual PM was nearly all enriched in Fe with Si and Ca. Classifying and source profiling of the individual particles by elemental maps and particle morphology were tried and particles were presumably divided into four groups (i.e., train/rail friction, train-rail sparking, ballast/abrasive, and cement).

Investigation on a Haze Episode of Fine Particulate Matter using Semi-continuous Chemical Composition Data (준 실시간 화학적 조성자료를 이용한 미세입자 연무 에피소드 규명)

  • Park, Seung-Shik;Kim, Sun-Jung;Gong, Bu-Joo;Lee, Kwon-Ho;Cho, Seog-Yeon;Kim, Jong-Choon;Lee, Suk-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.5
    • /
    • pp.642-655
    • /
    • 2013
  • In this study, semi-continuous measurements of $PM_{2.5}$ mass, organic and elemental carbon (OC and EC), black carbon (BC), and ionic species concentrations were made for the period of April 03~13, 2012, at a South Area Supersite at Gwangju. Possible sources causing the high concentrations of major chemical species in $PM_{2.5}$ observed during a haze episode were investigated. The measurement results, along with meteorological parameters, gaseous pollutants data, air mass back trajectory analyses and PSCF (potential source contribution function) results, were used to study the haze episode. Substantial enhancements of OC, EC, BC, $K^+$, $SO{_4}^{2-}$, $NO{_3}{^-}$, $NH{_4}{^+}$, and CO concentrations were closely associated with air masses coming from regions of forest fires in southeastern China, suggesting likely an impact of the forest fires. Also the PSCF maps for EC, OC, $SO{_4}^{2-}$, and $K^+$ demonstrate further that the long-range transport of smoke plumes of forest fires detected over the southeastern China could be a possible source of haze phenomena observed at the site. Another possible source leading to haze formation was likely from photochemistry of precursor gases such as volatile organic compounds, $SO_2$, and $NO_2$, resulting in accumulation of secondary organic aerosol, $SO{_4}^{2-}$ and $NO{_3}{^-}$. Throughout the episode, local wind directions were between 200 and $230^{\circ}C$, where two industrial areas are situated, with moderate wind speeds of 3~5 m/s, resulting in highly elevated concentration of $SO_2$ with a maximum of 15 ppb. The $SO{_4}^{2-}$ peak occurring in the afternoon hours coincided with maximum ambient temperature ($24^{\circ}C$) and ozone concentration (~100 ppb), and were driven by photochemistry of $SO_2$. As a result, the pattern of $SO{_4}^{2-}$ variations in relation to wind direction, $SO_2$ and $O_3$ concentrations, and the strong correlation between $SO_2$ and $SO{_4}^{2-}$ ($R^2=0.76$) suggests that in addition to the impact of smoke plumes from forest fires in the southeastern China, local $SO_2$ emissions were likely an important source of $SO{_4}^{2-}$ leading to haze formation at the site.

Solar Irradiance Estimation in Korea by Using Modified Heliosat-II Method and COMS-MI Imagery (수정된 Heliosat-II 방법과 COMS-MI 위성 영상을 이용한 한반도 일사량 추정)

  • Won Seok, Choi;Ah Ram, Song;Il, Kim Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.463-472
    • /
    • 2015
  • Solar radiation data are important data that can be used as basic research data in diverse areas. In particular, solar radiation data are essential for diverse studies that have been recently conducted in South Korea including those for new and renewable energy resource map making and crop yield forecasting. So purpose of this study is modification of Heliosat-II method to estimate solar irradiance in Korea by using COMS-MI imagery. For this purpose, in this study, errors appearing in ground albedo images were corrected through linear transformation. And method of producing background albedo map which is used in Heliosat-II method is modified to get more finely tuned one. Through the study, ground albedo correction could be successfully performed and background albedo maps could be successfully derived. Lastly, In this study, solar irradiance was estimated by using modified Heliostat-II method. And it was compared with actually measured values to verify the accuracy of the methods. Accuracy of estimated solar irradiance was 30.8% RMSE(%). And this accuracy level means that solar irradiance was estimated on 10% higher level than previous Heliosat-II method.