• 제목/요약/키워드: Energy injection control

검색결과 170건 처리시간 0.018초

Study on an Optimal Control Method for Energy Injection Resonant AC/AC High Frequency Converters

  • Su, Yu-Gang;Dai, Xin;Wang, Zhi-Hui;Tang, Chun-Sen;Sun, Yue
    • Journal of Power Electronics
    • /
    • 제13권2호
    • /
    • pp.197-205
    • /
    • 2013
  • In energy injection resonant AC-AC converters, due to the low frequency effect of the AC input envelope and the low energy injection losses requirement, the constant and steady control of the high frequency AC output envelope is still a problem that has not been solved very well. With the aid of system modeling, this paper analyzes the mechanism of the envelope pit on the resonant AC current. The computing methods for the critical damping point, the falling time and the bottom value of the envelope pit are presented as well. Furthermore, this paper concludes the stability precondition of the system AC output. Accordingly, an optimal control method for the AC output envelope is put forward based on the envelope prediction model. This control method can predict system responses dynamically under different series of control decisions. In addition, this control method can select best series of control decisions to make the AC output envelope stable and constant. Simulation and experimental results for a contactless power transfer system verify the control method.

Primary Current Generation for a Contactless Power Transfer System Using Free Oscillation and Energy Injection Control

  • Li, Hao Leo;Hu, Aiguo Patrick;Covic, Grant Anthony
    • Journal of Power Electronics
    • /
    • 제11권3호
    • /
    • pp.256-263
    • /
    • 2011
  • This paper utilizes free oscillation and energy injection principles to generate and control the high frequency current in the primary track of a contactless power transfer system. Here the primary power inverter maintains natural resonance while ensuring near constant current magnitude in the primary track as required for multiple independent loads. Such energy injection controllers exhibit low switching frequency and achieve ZCS (Zero Current Switching) by detecting the high frequency current, thus the switching stress, power losses and EMI of the inverter are low. An example full bridge topology is investigated for a contactless power transfer system with multiple pickups. Theoretical analysis, simulation and experimental results show that the proposed system has a fast and smooth start-up transient response. The output track current is fully controllable with a sufficiently good waveform for contactless power transfer applications.

액상 LPG 분사 엔진의 인젝터 제어 로직 (Injector Control Logic for a Liquid Phase LPG Injection Engine)

  • 조성우;민경덕
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.15-21
    • /
    • 2003
  • The liquid phase LPG injection engine is a new technology to make good use of LPG as a clean energy. However, it is difficult to precisely control air/fuel ratio in the system because of variation of fuel composition, change of temperature and flash boiling injection mechanism. This study newly suggests an injector control logic for liquid phase LPG injection systems. This logic compensates a number of effects such as variations of density, stoichiometric air/fuel ratio, injection delay time, injection pressure, release pressure which is formed by flash boiling of fuel at nozzle exit. This logic can precisely control air/fuel ratio with only two parameters of intake air flow rate and injection pressure without considering fuel composition, fuel temperature.

스풀밸브를 이용한 축압식 연료분사계의 작동특성에 관한 연구 (A Study on the Characteristics of Accumulator Type Fuel Injection System with Spool Valve)

  • 최영하;이장희;윤석주
    • 한국분무공학회지
    • /
    • 제6권1호
    • /
    • pp.1-8
    • /
    • 2001
  • Fuel injection system is very important in diesel combustion. Recently electronic control of fuel injection system and common rail systems are introduced to reduce the emission and to increase the energy efficiency from diesel engine by control of the injection timing and duration. In this study, evaluation possibility of the system for electronic control by spool valve, one of the accumulator type injection systems with spool valve using solenoid was composed and the operating characteristics were investigated to evaluate the effects of spring coefficient, initial spring force, solenoid driving time, fuel supply pressure on the injection timing and duration. We could confirm the capability that diesel injection was electronically controlled by spool valve.

  • PDF

직접분사식 LPG 엔진의 성층화 연소 및 안정성에 관한 연구 (A Study on the Stratified Combustion and Stability of a Direct Injection LPG Engine)

  • 이민호;김기호;하종한
    • 한국수소및신에너지학회논문집
    • /
    • 제27권1호
    • /
    • pp.106-113
    • /
    • 2016
  • Lean burn engine, classified into port injection and direct injection, is recognized as a promising way to meet better fuel economy. Especially, LPG direct injection engine is becoming increasingly popular due to their potential for improved fuel economy and emissions. Also, LPDi engine has the advantages of higher power output, higher thermal efficiency, higher EGR tolerance due to the operation characteristics of increased volumetric efficiency, compression ratio and ultra-lean combustion scheme. However, LPDi engine has many difficulties to be solved, such as complexity of injection control mode (fuel injection timing, injection rate), fuel injection pressure, spark timing, unburned hydrocarbon and restricted power. This study is investigated to the influence of spark timing, fuel injection position and fuel injection rate on the combustion stability of LPDi engine. Piston shape is constituted the bowl type piston. The characteristics of combustion is analyzed with the variations of spark timing, fuel injection position and fuel injection rate (early injection, late injection) in a LPDi engine.

소형 고속 전자제어 연료분사 엔진 개발에 관한 연구 (Study on Development of High-Speed Small Engine Controlled by EFI (Electronic Fuel Injection))

  • 이승진;류정인;최교남;정동수
    • 에너지공학
    • /
    • 제14권3호
    • /
    • pp.173-179
    • /
    • 2005
  • 소형고속엔진에서 연료분사 시스템은 기화기시스템 보다 출력, 연료소비율, 배기가스 등에서 향상된 결과를 가져온다. 최근에 국내에서 연료분사시스템은 차량에 사용되지만 이륜차에서는 사용되지는 않는다. 엔진에서 EFI(전자식연료분사)시스템은 변화하는 회전수에 따라 ECU 에서 정확한 연료를 공급할 수 있다. 본 연구의 목적은 이륜차에 사용되는 4valve SOHC 단기통 소형엔진에서 다양한 회전수에 맞는 엔진성능과 효율을 개선하기 위해 회전수별 연료분사효과를 고찰하였다.

Numerical Analysis of the Chemical Injection Characteristics Using a Low Reynolds Number Turbulence Model

  • Chang, Byong-Hoon;Chang Kyu;Park, Han-Rim
    • 에너지공학
    • /
    • 제8권1호
    • /
    • pp.110-118
    • /
    • 1999
  • In order to protect the nuclear reactor coolant system from corrosion, lithium is injected into the coolant from the chemical injection tank. The present study investigates the chemical injection characteristics of the injection tank using a low Reynolds number turbulence model. Laminar flow analysis showed very little diffusion of the jet and gave incorrect flow and concentration fields. A disk located near the inlet of the injection tank was effective in mixing the chemical additives in the top portion of the tank, and significant reduction in injection time was obtained.

  • PDF

직접분사식 고압 수소분사밸브의 개발에 관한 연구 (A Study on Development of High Pressure Hydrogen Injection Valve)

  • 김윤영;안종윤;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제11권3호
    • /
    • pp.107-117
    • /
    • 2000
  • Ball poppet valve type high pressure hydrogen injection valve actuated by solenoid has been developed for the feasibility of practical use of hydrogen fueled engine with direct injection and the precise control of fuel injection ratio in hydrogen fueled engine with dual injection. The gas-tightness of ball poppet injection valve is improved by the introduction of ball-shaped valve face, valve end typed spherical pair, and valve stem with rotating blade. Ball poppet valve is mainly closed by differential pressure due to the area difference between valve fillet and pressure piston. So, it can be operated by solenoid actuator with small driving force. From the evaluation of ball poppet injection valve, it was found that the gastightness and controlment of this injection valve are better than those of injection valve had been developed before.

  • PDF

증기분사를 적용한 고온수용 지열 히트펌프의 성능특성 (Performance of the Geothermal Heat Pump using Vapor Injection for Hot Water)

  • 박용정;박병덕
    • 한국수소및신에너지학회논문집
    • /
    • 제25권3호
    • /
    • pp.297-304
    • /
    • 2014
  • The purpose of this study is to evaluate the experimental performance characteristics of a water-to-water geothermal heat pump featuring a vapor refrigerant injection for the production of hot water. The performance of geothermal heat pump with a vapor injection was evaluated by comparing with that of a conventional geothermal heat pump without a vapor injection. For heating operation, the geothermal heat pump with a vapor injection is superior in COP and heating capacity. The vapor injection was more effective for supplying hot water while overloading. The vapor injection was effective for the improvement of the cooling capacity. However, the vapor injection was not effective for the increasing of COP according to the increased input of a compressor. The advantage of vapor injection in water-to-water geothermal heat pump become disappeared while cooling operation with lower part loading.

A Dynamic Model of a Gas Engine-Driven Heat Pump in Cooling Mode for Real-Time Simulation

  • Shin, Young-Gy;Yang, Hoon-Cheul;Tae, Choon-Seob;Jang, Cheol-Yong;Cho, Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제14권3호
    • /
    • pp.85-93
    • /
    • 2006
  • The present study has been conducted to simulate dynamics of a gas engine-driven heat pump (GHP) for the design of control algorithm. The dynamic model of a GHP was based on conservation laws of mass and energy. For the control of refrigerant pressures, actuators such as an engine throttle valve, outdoor fans, coolant three-way valves and liquid injection valves were controlled by P or PI algorithm. The simulation results were found to be realistic enough to be applied for the control algorithm design. The model could be applied to build a virtual real-time GHP system so that it interfaces with a real controller for the purpose of developing control algorithm.