• Title/Summary/Keyword: Energy gap

Search Result 1,649, Processing Time 0.027 seconds

Quantum Efficiency Measurement and Analysis of Solar Cells (태양전지의 양자효율 측정 및 분석)

  • Youngkuk Kim;Donghyun Oh;Jinjoo Park;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.351-361
    • /
    • 2023
  • The purpose of this paper is to help those who research and develop solar cells in university laboratories and industrial sites understand the most basic and important quantum efficiency measurement and analysis method in analyzing solar cell performance. Starting with the definition of quantum efficiency, we calculate the theoretical current density according to the band gap of the solar cell material from the solar spectrum, along with a detailed introduction to the measurement and analysis methods, and measure and analyze the theoretical current density and quantum efficiency. We discuss in depth how to analyze the performance of solar cells through Quantum efficiency measurement and analysis of solar cells is a very useful method that can give intuition to solar cell performance analysis as it can analyze solar cells according to depth (front emitter, bulk, rear surface). Students and researchers who study solar cells with a deep understanding of theoretical current density and quantum efficiency measurement analysis are expected to use it as a basis for analyzing solar cell performance.

A Study on Forecasting of the Manpower Demand for the Eco-friendly Smart Shipbuilding (친환경 스마트 선박 인력 수요예측에 관한 연구)

  • Shin, Sang-Hoon;Shin, Yong-John
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.2
    • /
    • pp.1-13
    • /
    • 2023
  • This study forecasted the manpower demand of eco-friendly smart shipbuilding, whose importance and weight are increasing according to the environmental regulations of the IMO and the spread of the 4th industrial revolution technology. It predicted the shipbuilding industry manpower by applying various models of trend analysis and time series analysis based on data from 2000 to 2020 of Statistics Korea. It was found that the prediction applying geometric mean had the smallest gap among the trend and time series analysis methods in comparing between forecast results and actual data for the past 5 years. Therefore, the demand for manpower in the shipbuilding industry was predicted by using the geometric mean method. In addition, the manpower demand of smart eco-friendly ships wast forecasted by using the 2018 and 2020 manpower survey results of the Ministry of Trade, Industry and Energy and reflecting the trend of manpower increase in the shipbuilding industry. The result of forecasting showed that 62,001 person in 2025 and 85,035 people in 2030. This study is expected to contribute to the adjustment of manpower supply and demand and the training professional manpower in the future by increasing the accuracy of forecasting for high value-added eco-friendly smart ships.

Effects of Electrodeposition Parameters on Electrochemical Hydroxyl Radical Evolution of PbO2 Electrode (이산화납 전극 제조 시 전기화학적 증착인자가 수산화라디칼 발생에 미치는 영향)

  • Shim, Soojin;Yoon, Jeyong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.12
    • /
    • pp.647-655
    • /
    • 2016
  • Lead dioxide ($PbO_2$) is an electrode material that is effective for organic pollutant degradation based on hydroxyl radical ($^{\bullet}OH$) attack. Representative parameters for $PbO_2$ electrodeposition are summarized to current, temperature, reaction time, concentration of Pb(II) and electrolyte agent. In this study, $Ti/PbO_2$ electrodes were fabricated by electrodeposition method under controlled reaction time, current density, temperature, concentration of $HNO_3$ electrolyte. Effects of deposition parameters on $^{\bullet}OH$ evolution were investigated in terms of electrochemical bleaching of p-Nitrosodimethylaniline (RNO). As major results, the $^{\bullet}OH$ evolution was promoted at the $PbO_2$ that was deposited in longer reaction time (1-90 min), lower current density ($0.5-50mA/cm^2$), higher temperature ($5-65^{\circ}C$) and lower $HNO_3$ concentration (0.01-1.0 M). Especially, the $PbO_2$ which was deposited in 0.01 M of lowest $HNO_3$ concentration by applying $20mA/cm^2$ for above 10 min was most effective on $^{\bullet}OH$ evolution. The performance gap between $PbO_2$s that was best and worst in $^{\bullet}OH$ evolution was about 41%. Among the properties of $PbO_2$ related on $^{\bullet}OH$ evolution performance, conductivity of $Ti/PbO_2$ significantly influenced on $^{\bullet}OH$ evolution. The increase in conductivity promoted $^{\bullet}OH$ evolution. In addition, the increase in crystal size of $PbO_2$ interfered $^{\bullet}OH$ evolution at surface of some $PbO_2$ deposits.

Strategy for Development of HSE Management Framework for Offshore CCS Project in Korea (국내 해양 CCS 사업의 HSE 관리 프레임워크 구축 전략)

  • Noh, Hyonjeong;Kang, Kwangu;Kang, Seong-Gil;Lee, Jong-Gap
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.1
    • /
    • pp.26-36
    • /
    • 2017
  • Korea is preparing an offshore carbon capture, transport and storage (CCS) demonstration project which is recognized as one of important $CO_2$ reduction technologies to mitigate climate change. The offshore CCS project aims to transport, inject and store large amount of $CO_2$ into offshore geologic formation, and has a potential risk of leakage which might cause disastrous damage to human health, environment and property. Therefore, in order to ensure the safety of the offshore CCS project, a strict HSE (health, safety and environment) management plan and its implementation are required throughout the project life cycle. However, there are no HSE domestic laws or regulations applicable to CCS projects, and the related research is insufficient in Korea. For the derivation of the essential and urgent requirement in HSE management framework applicable to the offshore CCS project in Korea, we analysed the HSE management methodologies and foreign CCS HSE management guidelines and cases. First, this paper has analyzed ISO 31000, a generalized risk management principles. Second, we have investigated the HSE management practices of CCS projects in Norway and UK. Based on the analyses, we suggested the necessity of developing the HSE Philosophy and the HSE management process through the whole life cycle. Application of HSE management in early phase of an offshore CCS project will promote systematic and successful project implementation in a cost-effective and safe way.

Effect of substrate bias voltage on a-C:H film (기판 bias 전압이 a-C:H 박막의 특성에 미치는 영향)

  • 유영조;김효근;장홍규;오재석;김근식
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.4
    • /
    • pp.348-353
    • /
    • 1997
  • Hydrogenated amorphous carbon(a-C:H) films were deposited on p-type Si(100) by DC saddle-field plasma enhanced CVD to investigate the effect of substrate bias on optical properties and structural changes. They were deposited using pure methane gas at a wide range of substrate bias at room temperature and 90 mtorr. The substrate bias voltage ($V_s$) was employed from $V_s=0 V$ to $V_s=400 V$. The information of optical properties was investigated by photoluminescence and transmitance. Chemical bondings of a-C:H have been explored from FT-IR and Raman spectroscopy. The thickness and relative hydrogen content of the films were measured by Rutherford backscattering spectroscopy (RBS) and elastic recoil detection (ERD) technigue. The growth rate of a-C:H film was decreased with the increase of $V_s$, but the hydrogen content of the film was increased with the increase of $V_s$. The a-C:H films deposited at the lowest $V_s$ contain the smallest amount of hydrogen with most of C-H bonds in the of $CH_2$ configuration, whereas the films produced at higher $V_s$ reveal dominant the $CH_3$ bonding structure. The emission of white photoluminescence from the films were observed even with naked eyes at room temperature and the PL intensity of the film has the maximum value at $V_s$=200 V. With $V_s$ lower than 200 V, the PL intensity of the film increased with V, but for V, higher than 200 V, the PL intensity decreased with the increase of $V_s$. The peak energy of the PL spectra slightly shifted to the higher energy with the increase of $V_s$. The optical bandgap of the film, determined by optical transmittance, was increased from 1.5 eV at $V_s$=0V to 2.3 eV at $V_s$=400 V. But there were no obvious relations between the PL peak and the optical gap which were measured by Tauc process.

  • PDF

Oil Fluorescence Spectrum Analysis for the Design of Fluorimeter (형광 광도계 설계인자 도출을 위한 기름의 형광 스펙트럼 분석)

  • Oh, Sangwoo;Seo, Dongmin;Ann, Kiyoung;Kim, Jaewoo;Lee, Moonjin;Chun, Taebyung;Seo, Sungkyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.4
    • /
    • pp.304-309
    • /
    • 2015
  • To evaluate the degree of contamination caused by oil spill accident in the sea, the in-situ sensors which are based on the scientific method are needed in the real site. The sensors which are based on the fluorescence detection theory can provide the useful data, such as the concentration of oil. However these kinds of sensors commonly are composed of the ultraviolet (UV) light source such as UV mercury lamp, the multiple excitation/emission filters and the optical sensor which is mainly photomultiplier tube (PMT) type. Therefore, the size of the total sensing platform is large not suitable to be handled in the oil spill field and also the total price of it is extremely expensive. To overcome these drawbacks, we designed the fluorimeter for the oil spill detection which has compact size and cost effectiveness. Before the detail design process, we conducted the experiments to measure the excitation and emission spectrum of oils using five different kinds of crude oils and three different kinds of processed oils. And the fluorescence spectrometer were used to analyze the excitation and emission spectrum of oil samples. We have compared the spectrum results and drawn the each common spectrum regions of excitation and emission. In the experiments, we can see that the average gap between maximum excitation and emission peak wavelengths is near 50 nm for the every case. In the experiment which were fixed by the excitation wavelength of 365 nm and 405 nm, we can find out that the intensity of emission was weaker than that of 280 nm and 325 nm. So, if the light sources having the wavelength of 365 nm or 405 nm are used in the design process of fluorimeter, the optical sensor needs to have the sensitivity which can cover the weak light intensity. Through the results which were derived by the experiment, we can define the important factors which can be useful to select the effective wavelengths of light source, photo detector and filters.

Synthesis and Characterization of Magnetic Core-shell ZnFe2O4@ZnO@SiO2 Nanoparticles (Magnetic Core-shell ZnFe2O4@ZnO@SiO2 Nanoparticle의 합성과 성질에 관한 연구)

  • Yoo, Jeong-Yeol;Lee, Young-Ki;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.5
    • /
    • pp.397-406
    • /
    • 2015
  • ZnO, II-VI group inorganic compound semi-conductor, has been receiving much attention due to its wide applications in various fields. Since the ZnO has 3.37 eV of a wide band gap and 60 meV of big excitation binding energy, it is well-known material for various uses such the optical property, a semi-conductor, magnetism, antibiosis, photocatalyst, etc. When applied in the field of photocatalyst, many research studies have been actively conducted regarding magnetic materials and the core-shell structure to take on the need of recycling used materials. In this paper, magnetic core-shell ZnFe2O4@SiO2 nanoparticles (NPs) have been successfully synthesized through three steps. In order to analyze the structural characteristics of the synthesized substances, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR) were used. The spinel structure of ZnFe2O4 and the wurtzite structure of ZnO were confirmed by XRD, and ZnO production rate was confirmed through the analysis of different concentrations of the precursors. The surface change of the synthesized materials was confirmed by SEM. The formation of SiO2 layer and the synthesis of ZnFe2O4@ZnO@SiO2 NPs were finally verified through the bond of Fe-O, Zn-O and Si-O-Si by FT-IR. The magnetic property of the synthesized materials was analyzed through the vibrating sample magnetometer (VSM). The increase and decrease in the magnetism were respectively confirmed by the results of the formed ZnO and SiO2 layer. The photocatalysis effect of the synthesized ZnFe2O4 @ZnO@SiO2 NPs was experimented in a black box (dark room) using methylene blue (MB) under UV irradiation.

Geophysical and Geological Investigation for Selecting a Dinosaur Museum Site in the Dinosaur Egg Fossil Area, Gojeong-ri, Hwasung, Gyeonggi Province (경기도 화성 고정리 공룡알 화석지 공룡생태박물관 부지선정을 위한 지구물리 및 지질조사)

  • Kim, Han-Joon;Jeong, Gap-Sik;Yi, Bo-Yeon;Jo, Churl-Hyun;Lee, Kwang-Bae;Lee, Jun-Ho;Jou, Hyeong-Tae;Lee, Gwang-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.357-363
    • /
    • 2010
  • In this study, we investigated the geologic structure of the basement and overlying sediments of the construction site of the dinosaur egg fossil museum in Hwasung, Gyeonggi Province through refraction seismology, drilling, and downward seismic velocity measurements in the drill holes. The construction site ($350{\times}750\;m^2$) is located in the reclaimed area south of Sihwa Lake, Gojeong-ri. About 6,950 m of seismic refraction data consisting of 11 lines were acquired using a sledge hammer source. Drilling to the basement was performed at five sites. Sediment samples from drilling were analysed for grain-size distribution and age dating. At two drill holes, seismic velocity was measured with depth using a hammer as a seismic source. The geological structure of the study area consists of, from top to bottom, a tidal flat layer (5 ~ 12 m thick), a weathered soil layer (2 ~ 8 m thick), and the basement. The basement is interpreted as Cretaceous sedimentary rocks that tend to be shallow eastward. The volume of the tidal flat sediments and weathered soil in the study area is estimated as $1.4{\times}10^6\;m^3$, weighing $3.5{\times}10^6$ tons. The rate of sea level rise since 8,000 yrs BP is estimated to be 0.1 ~ 0.15 cm/yr.

Growth and Opto-electric Characterization of ZnSe Thin Film by Chemical Bath Deposition (CBD(Chemical Bath Deposition)방법에 의한 ZnSe 박막성장과 광전기적 특성)

  • Hong, K.J.;You, S.H.
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.62-70
    • /
    • 2001
  • The ZnSe sample grown by chemical bath deposition (CBD) method were annealed in Ar gas at $45^{\circ}C$. Using extrapolation method of X-ray diffraction pattern, it was found to have zinc blend structure whose lattice parameter $a_o$ was $5.6687\;{\AA}$. From Hall effect, the mobility was likely to be decreased by impurity scattering at temperature range from 10 K to 150 K and by lattice scattering at temperature range from 150 K to 293 K. The band gap given by the transmission edge changed from $2.700{\underline{5}}\;eV$ at 293 K to $2.873{\underline{9}}\;eV$ at 10 K. Comparing photocurrent peak position with transmission edge, we could find that photocurrent peaks due to excition electrons from valence band, ${\Gamma}_8$ and ${\Gamma}_7$ and to conduction band ${\Gamma}_6$ were observed at photocurrent spectrum. From the photocurrent spectra by illumination of polarized light on the ZnSe thin film, we have found that values of spin orbit coupling splitting ${\Delta}so$ is $0.098{\underline{1}}\;eV$. From the PL spectra at 10K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be $0.061{\underline{2}}\;eV$ and the dissipation energy of the donor -bound exciton and acceptor-bound exciton to be $0.017{\underline{2}}\;eV$, $0.031{\underline{0}}\;eV$, respectively.

  • PDF

The Policy of Win-Win Growth between Large and Small Enterprises : A South Korean Model (한국형 동반성장 정책의 방향과 과제)

  • Lee, Jang-Woo
    • Korean small business review
    • /
    • v.33 no.4
    • /
    • pp.77-93
    • /
    • 2011
  • Since 2000, the employment rate of small and medium enterprises (SMEs) has dwindled while the creation of new jobs and the emergence of healthy SMEs have been stagnant. The fundamental reason for these symptoms is that the economic structure is disadvantageous to SMEs. In particular, the greater gap between SMEs and large enterprises has resulted in polarization, and the resulting imbalance has become the largest obstacle to improving SMEs' competitiveness. For example, the total productivity has continued to drop, and the average productivity of SMEs is now merely 30% of that of large enterprises, and the average wage of SMEs' employees is only 53% of that of large enterprises. Along with polarization, rapid industrialization has also caused anti-enterprise consensus, the collapse of the middle class, hostility towards establishments, and other aftereffects. The general consensus is that unless these problems are solved, South Korea will not become an advanced country. Especially, South Korea is now facing issues that need urgent measures, such as the decline of its economic growth, the worsening distribution of profits, and the increased external volatility. Recognizing such negative trends, the MB administration proposed a win-win growth policy and recently introduced a new national value called "ecosystemic development." As the terms in such policy agenda are similar, however, the conceptual differences among such terms must first be fully understood. Therefore, in this study, the concepts of win-win growth policy and ecosystemic development, and the need for them, were surveyed, and their differences from and similarities with other policy concepts like win-win cooperation and symbiotic development were examined. Based on the results of the survey and examination, the study introduced a South Korean model of win-win growth, targeting the promotion of a sound balance between large enterprises and SMEs and an innovative ecosystem, and finally, proposing future policy tasks. Win-win growth is not an academic term but a policy term. Thus, it is less advisable to give a theoretical definition of it than to understand its concept based on its objective and method as a policy. The core of the MB administration's win-win growth policy is the creation of a partnership between key economic subjects such as large enterprises and SMEs based on each subject's differentiated capacity, and such economic subjects' joint promotion of growth opportunities. Its objective is to contribute to the establishment of an advanced capitalistic system by securing the sustainability of the South Korean economy. Such win-win growth policy includes three core concepts. The first concept, ecosystem, is that win-win growth should be understood from the viewpoint of an industrial ecosystem and should be pursued by overcoming the issues of specific enterprises. An enterprise is not an independent entity but a social entity, meaning it exists in relationship with the society (Drucker, 2011). The second concept, balance, points to the fact that an effort should be made to establish a systemic and social infrastructure for a healthy balance in the industry. The social system and infrastructure should be established in such a way as to create a balance between short- term needs and long-term sustainability, between freedom and responsibility, and between profitability and social obligations. Finally, the third concept is the behavioral change of economic entities. The win-win growth policy is not merely about simple transactional relationships or determining reasonable prices but more about the need for a behavior change on the part of economic entities, without which the objectives of the policy cannot be achieved. Various advanced countries have developed different win-win growth models based on their respective cultures and economic-development stages. Japan, whose culture is characterized by a relatively high level of group-centered trust, has developed a productivity improvement model based on such culture, whereas the U.S., which has a highly developed system of market capitalism, has developed a system that instigates or promotes market-oriented technological innovation. Unlike Japan or the U.S., Europe, a late starter, has not fully developed a trust-based culture or market capitalism and thus often uses a policy-led model based on which the government leads the improvement of productivity and promotes technological innovation. By modeling successful cases from these advanced countries, South Korea can establish its unique win-win growth system. For this, it needs to determine the method and tasks that suit its circumstances by examining the prerequisites for its success as well as the strengths and weaknesses of each advanced country. This paper proposes a South Korean model of win-win growth, whose objective is to upgrade the country's low-trust-level-based industrial structure, in which large enterprises and SMEs depend only on independent survival strategies, to a high-trust-level-based social ecosystem, in which large enterprises and SMEs develop a cooperative relationship as partners. Based on this objective, the model proposes the establishment of a sound balance of systems and infrastructure between large enterprises and SMEs, and to form a crenovative social ecosystem. The South Korean model of win-win growth consists of three axes: utilization of the South Koreans' potential, which creates community-oriented energy; fusion-style improvement of various control and self-regulated systems for establishing a high-trust-level-oriented social infrastructure; and behavioral change on the part of enterprises in terms of putting an end to their unfair business activities and promoting future-oriented cooperative relationships. This system will establish a dynamic industrial ecosystem that will generate creative energy and will thus contribute to the realization of a sustainable economy in the 21st century. The South Korean model of win-win growth should pursue community-based self-regulation, which promotes the power of efficiency and competition that is fundamentally being pursued by capitalism while at the same time seeking the value of society and community. Already existing in Korea's traditional roots, such objectives have become the bases of the Shinbaram culture, characterized by the South Koreans' spontaneity, creativity, and optimism. In the process of a community's gradual improvement of its rules and procedures, the trust among the community members increases, and the "social capital" that guarantees the successful control of shared resources can be established (Ostrom, 2010). This basic ideal can help reduce the gap between large enterprises and SMEs, alleviating the South Koreans' victim mentality in the face of competition and the open-door policy, and creating crenovative corporate competitiveness. The win-win growth policy emerged for the purpose of addressing the polarization and imbalance structure resulting from the evolution of 21st-century capitalism. It simultaneously pursues efficiency and fairness on one hand and economic and community values on the other, and aims to foster efficient interaction between the market and the government. This policy, however, is also evolving. The win-win growth policy can be considered an extension of the win-win cooperation that the past 'Participatory Government' promoted at the enterprise management level to the level of systems and culture. Also, the ecosystemic development agendum that has recently emerged is a further extension that has been presented as a national ideal of "a new development model that promotes the co-advancement of environmental conservation, growth, economic development, social integration, and national and individual development."