• Title/Summary/Keyword: Energy flux density

Search Result 263, Processing Time 0.024 seconds

Development of Program for Ignition Temperature and Its Applications (발화온도 산출 프로그램 개발 및 적용)

  • Park, Won-Hee;Cho, Youngmim;Kwon, Tae-Soom
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.4
    • /
    • pp.243-250
    • /
    • 2017
  • A fire phenomenon of a solid such as wood involves a phenomenon in which solid is heated from the outside and the gas generated through the thermal pyrolysis process of the material is burnt. The thermal pyrolysis phenomenon of the solid is a phenomenon in which the amount of energy incident from the outside, the amount of heat dissipation of the solid material, the heat transfer between the solid material and the surroundings including the amount of heat transfer to the air adjacent to the solid surface, and the fraction of oxygen in the air. In this paper, we calculate the required ignition temperature to simulate the fire phenomenon as simple as possible. By using cone calorimeter, the ignition time was measured by variously controlling the heat flux flowing into the wood specimen by using various wood specimens. The user friendly program is developed for calculation of the ignition temperature. Five different woods such as low density MDF, high density MDF, plywood, douglas fir and PB with various thickness are considered. The ignition temperatures suggested in this paper can be used for fire propagation analysis for woods.

Response Analysis of the NE213-PSD System for Neutron Energy Spectreum Measurement (중성자 에너지 측정을 위한 NE213-PSD 장치의 감응 분석)

  • Lee, Kyung-Ju
    • Analytical Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.367-372
    • /
    • 1992
  • In order to measure the energy spectrum of a radioactive neutron source, the pulse shape discrimination (PSD) system with organic scintillator, NE-213, was characterized by using some of the gamma ray sources and neutron source, Am-Be. The figure of merit of the rise time spectrum of AmBe source measured by this system was about 1.13. This value agrees well with the value of 1.3 which is measured for monoenergetic source, $^{12}C(d,\;n)^{13}N$. The results of present experiment for performance test of NE213-PSD system will provide the useful technique to measure the spectrum of neutron-gamma mixed field and to establish the neutron energy spectrum and flux density standards.

  • PDF

Interferometric Monitoring of Gamma-Ray Bright AGNs: 4C +28.07 and Its Synchrotron Self-Absorption Spectrum

  • Myoung-Seok Nam;Sang-Sung Lee;Whee Yeon Cheong
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.231-252
    • /
    • 2023
  • We present the analysis results of the simultaneous multifrequency observations of the blazar 4C +28.07. The observations were conducted by the Interferometric Monitoring of Gamma-ray Bright Active Galactic Nuclei (iMOGABA) program, which is a key science program of the Korean Very Long Baseline Interferometry (VLBI) Network (KVN). Observations of the iMOGABA program for 4C +28.07 were conducted from 16 January 2013 (MJD 56308) to 13 March 2020 (MJD 58921). We also used γ-ray data from the Fermi Large Array Telescope (Fermi-LAT) Light Curve Repository, covering the energy range from 100 MeV to 100 GeV. We divided the iMOGABA data and the Fermi-LAT data into five periods from 0 to 4, according to the prosody of the 22 GHz data and the presence or absence of the data. In order to investigate the characteristics of each period, the light curves were plotted and compared. However, a peak that formed a hill was observed earlier than the period of a strong γ-ray flare at 43-86 GHz in period 3 (MJD 57400-58100). Therefore, we assumed that the minimum total CLEANed flux density for each frequency was quiescent flux (Sq) in which the core of 4C +28.07 emitted the minimum, with the variable flux (Svar) obtained by subtracting Sq from the values of the total CLEANed flux density. We then compared the variability of the spectral indices (α) between adjacent frequencies through a spectral analysis. Most notably, α22-43 showed optically thick spectra in the absence of a strong γ-ray flare, and when the flare appeared, α22-43 became optically thinner. In order to find out the characteristics of the magnetic field in the variable region, the magnetic field strength in the synchrotron self-absorption (BSSA) and the equipartition magnetic field strength (Beq) were obtained. We found that BSSA is largely consistent with Beq within the uncertainty, implying that the SSA region in the source is not significantly deviated from the equipartition condition in the γ-ray quiescent periods.

Fabrication of the Alnico Bonded Magnets for Measuring Instruments and its Magnetic Properties (계측기용 알니코 본드자석의 제조 및 자기 특성연구)

  • Kim, Jung Sik
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.85-91
    • /
    • 2011
  • Alnico magnets can be used as magnetic bearings for the precise electric power measuring instruments such as watt-hour meters because they have high remanence ($B_r$), relatively high maximum energy product ($(BH)_{max}$), and excellent temperature stability. In this study, Alnico composite magnets were fabricated by appropriately mixing alnico alloy powders with epoxy resin and binder. The Alnico powders mixed with epoxy resin and a hardening agent with a mixing ratio of 96:4 were pressed and then cured to be a toroid-type ring magnet with an outer diameter (${\Phi}_{out}$) of 15 mm, an inner diameter (${\Phi}_{in}$) of 6.5 mm and a thickness (t) of 2.5 mm, respectively. The magnetic properties of the Alnico ring magnets were varied with the mixing ratio of Alnico powders that possess different average particle sizes. The Alnico ring magnet prepared by mixing 5 wt% of $50{\mu}m$ (small size) powder, 15~20 wt% of $150{\mu}m$ (medium size) powder, and 75~80 wt% of $300{\mu}m$ (large size) powder showed the best magnetic properties (remanent induction, coercive force, maximum energy product, and surface flux density). In addition, measurements of temperature and moisture characteristics for the Alnico ring magnets showed that the surface flux densities of the N and S poles decreased little and the repulsive distance between the magnets decreased as small as 0.05 mm after 10 days.

Molecular Beam Epitaxial Growth of Oxide Single Crystal Films

  • Yoon, Dae-Ho;Yoshizawa, Masahito
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.508-508
    • /
    • 1996
  • ;The growth of films have considerable interest in the field of superlattice structured multi-layer epitaxy led to realization of new devices concepts. Molecular beam epitaxy (MBE) with in situ observation by reflection high-energy electron diffraction (RHEED) is a key technology for controlled layered growth on the atomic scale in oxide crystal thin films. Also, the combination of radical oxygen source and MBE will certainly accelerate the progress of applications of oxides. In this study, the growth process of single crystal films using by MBE method is discussed taking the oxide materials of Bi-Sr-Ca-Cu family. Oxidation was provided by a flux density of activated oxygen (oxygen radicals) from an rf-excited discharge. Generation of oxygen radicals is obtained in a specially designed radical sources with different types (coil and electrode types). Molecular oxygen was introduced into a quartz tube through a variable leak valve with mass flowmeter. Corresponding to the oxygen flow rate, the pressure of the system ranged from $1{\;}{\times}{\;}10^{-6}{\;}Torr{\;}to{\;}5{\;}{\times}{\;}10^{-5}$ Torr. The base pressure was $1{\;}{\times}{\;}10^{-10}$ Torr. The growth of Bi-oxides was achieved by coevaporation of metal elements and oxygen. In this way a Bi-oxide multilayer structure was prepared on a basal-plane MgO or $SrTiO_3$ substrate. The grown films compiled using RHEED patterns during and after the growth. Futher, the exact observation of oxygen radicals with MBE is an important technology for a approach of growth conditions on stoichiometry and perfection on the atomic scale in oxide. The oxidization degree, which is determined and controlled by the number of activated oxygen when using radical sources of two types, are utilized by voltage locked loop (VLL) method. Coil type is suitable for oxygen radical source than electrode type. The relationship between the flux of oxygen radical and the rf power or oxygen partial pressure estimated. The flux of radicals increases as the rf power increases, and indicates to the frequency change having the the value of about $2{\times}10^{14}{\;}atoms{\;}{\cdots}{\;}cm^{-2}{\;}{\cdots}{\;}S^{-I}$ when the oxygen flow rate of 2.0 seem and rf power 150 W.150 W.

  • PDF

Flow of MHD Powell-Eyring nanofluid: Heat absorption and Cattaneo-Christov heat flux model

  • Sharif, Humaira;Khadimallah, Mohamed A.;Naeem, Muhammad Nawaz;Hussain, Muzamal;Hussain, Sajjad;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.221-234
    • /
    • 2021
  • During the previous few years, phenomenon of bioconvection along with the use of nanoparticles showed large number of applications in technological and industrial field. This paper analyzed the bioconvection phenomenon in magnetohydrodynamic boundary layer flow of a Powell-Eyring nanoliquid past a stretchable cylinder with Cattaneo-Christov heat flux. In addition, the impacts of chemical reaction and heat generation/absorption parameter are considered. By the use of appropriate transformation, the governing PDEs (nonlinear) have been transformed and formulated into nonlinear ODEs. The resulting nonlinear ODEs subjected to relevant boundary conditions are solved analytically through homotopy analysis method which is programmed in Mathematica software. Graphical and numerical results versus physical quantities like velocity, temperature, concentration and motile microorganism are investigated under the impact of physical parameters. It is noted that velocity profile enhances as the curvature parameter A and Eyring-Powell fluid parameter M increases but a decline manner for large values of buoyancy ratio parameter Nr and bio-convection Rayleigh number Rb. In the presence of Prandtl number Pr, Eyring-Powell fluid parameter M and heat absorption parameter ��, temperature profile decreases. Nano particle concentration profile increases for increasing values of magnetic parameter Ha and thermophoresis parameter Nt. The motile density profile has revealed a decrement pattern for higher values of bio-convection Lewis number Lb and bio-convection peclet number Pe. This study may find uses in bio-nano coolant systems, advance nanomechanical bio-convection energy conversion equipment's, etc.

Design of Micro-structured Small Scale Energy Harvesting System for Pervasive Computing Applications (편재형 컴퓨팅을 위한 미세구조 에너지 하베스팅 시스템의 구조 설계)

  • Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.918-924
    • /
    • 2009
  • In this paper, we designed micro-structured electromagnetic transducers for energy harvesting and verified the performance of proposed transducers using finite element analysis software, COMSOL Multiphysics. To achieve higher energy transduce efficiency, around the magnetic core material, three-dimensional micro-coil structures with high number of turns are fabricated using semiconductor fabrication process technologies. To find relations between device size and energy transduce efficiency, generated electrical power values of seven different sizes of transducers ($3{\times}3\;mm^2$, $6{\times}6\;mm^2$, $9{\times}9\;mm^2$, $12{\times}12\;mm^2$, $15{\times}15\;mm^2$, $18{\times}18\;mm^2$, and $21{\times}21\;mm^2$) are analyzed on various magnetic flux density environment ranging from 0.84 T to 1.54 T and it showed that size of $15{\times}15\;mm^2$ device can generate $991.5\;{\mu}W$ at the 8 Hz of environmental kinetic energy. Compare to other electromagnetic energy harvesters, proposed system showed competitive performance in terms of power generation, operation bandwidth and size. Since proposed system can generate electric power at very low frequency of kinetic energy from typical life environment including walking and body movement, it is expected that proposed system can be effectively applied to various pervasive computing applications including power source of embodied medical equipment, power source of RFID sensors and etc. as an secondary power sources.

Permanent Magnet Overhang Effect in Permanent Magnetic Actuator Using 3 Dimension Equivalent Magnetic Circuit network Method

  • Lim Seung-Bin;Kwon Ho;Kwon Sam-Young;Choi Seung-kil;Baek Soo-Hyun;Lee Ju
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.123-128
    • /
    • 2005
  • This paper presents an analysis of the permanent magnet overhang effect for the permanent magnetic actuator. Generally, the overhang is often used to increase the force density in permanent magnet machineries. The overhang is particularly profitable in reducing the volume after increasing the force density per volume when using the overhang effect of the permanent magnet. Therefore, the 3D Equivalent Magnetic Circuit Network Method (3D EMCN) has been used in this paper. According to the plunger position, the flux distribution per overhang length and the holding force are quantitatively compared. Furthermore, an appropriate length of the overhang has been proposed. To confirm the accuracy of the analysis method, the results of 2D FEM and 3D FEM are compared for the basic model.

The Design Method of the Torquer in DTG (자이로스코프에서 토커의 설계 및 해석)

  • 김홍규;정현교;홍선기
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.1
    • /
    • pp.48-53
    • /
    • 1996
  • The role of the torquer in dynamically tuned gyroscope (DTG) is to erect the slanted rotor straight. This IBper presents the design method of the torquer. The torquer must satisfy the desired maximum angular velocity condition. The performance of magnet-residual flux density, maximum energy product, and so on-is limited by the material characteristics. So we should design the torquer with the limited condition that magnet performance is given. If the mechanical size of DTG is deter-mined, the dimension of the torquer is calculated and the space of the torquer becomes constant. Therefore, if we determine the diameter of the torquer coil, the number of coil turns is calculated automatically. Using these dimensions, we can calculate the torque and the scale factor. The maximum angular velocity is computed if we know the maximum current density. The analysis of the torquer was carried out by the 3-dimensional finite element method. The proposed algorithm of the torquer design was valid in comparison with the experimental data obtained from fabricated DTG.

  • PDF

Unsteady Analysis of the Conduction-Dominated Three-Dimensional Close-Contact Melting (열전도가 주도적인 삼차원 접촉융해에 대한 비정상 해석)

  • Yoo, Hoseon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.945-956
    • /
    • 1999
  • This work reports a set of approximate analytical solutions describing the initial transient process of close-contact melting between a rectangular parallelepiped solid and a flat plate on which either constant temperature or constant heat flux is imposed. Not only relative motion of the solid block tangential to the heating plate, but also the density difference between the solid and liquid phase is incorporated in the model. The thin film approximation reduces the force balance between the solid weight and liquid pressure, and the energy balance at the melting front into a simultaneous ordinary differential equation system. The normalized model equations admit compactly expressed analytical solutions which include the already approved two-dimensional solutions as a subset. In particular, the normalized liquid film thickness is independent of all pertinent parameters, thereby facilitating to define the transition period of close-contact melting. A unique behavior of the solid descending velocity due to the density difference is also resolved by the present solution. A new geometric function which alone represents the three-dimensional effect is introduced, and its properties are clarified. One of the representative results is that heat transfer is at least enhanced at the expense of the increase in friction as the cross-sectional shape deviates from the square under the same contact area.