• 제목/요약/키워드: Energy estimation

검색결과 2,206건 처리시간 0.028초

Adaptive On-line State-of-available-power Prediction of Lithium-ion Batteries

  • Fleischer, Christian;Waag, Wladislaw;Bai, Ziou;Sauer, Dirk Uwe
    • Journal of Power Electronics
    • /
    • 제13권4호
    • /
    • pp.516-527
    • /
    • 2013
  • This paper presents a new overall system for state-of-available-power (SoAP) prediction for a lithium-ion battery pack. The essential part of this method is based on an adaptive network architecture which utilizes both fuzzy model (FIS) and artificial neural network (ANN) into the framework of adaptive neuro-fuzzy inference system (ANFIS). While battery aging proceeds, the system is capable of delivering accurate power prediction not only for room temperature, but also at lower temperatures at which power prediction is most challenging. Due to design property of ANN, the network parameters are adapted on-line to the current battery states (state-of-charge (SoC), state-of-health (SoH), temperature). SoC is required as an input parameter to SoAP module and high accuracy is crucial for a reliable on-line adaptation. Therefore, a reasonable way to determine the battery state variables is proposed applying a combination of several partly different algorithms. Among other SoC boundary estimation methods, robust extended Kalman filter (REKF) for recalibration of amp hour counters was implemented. ANFIS then achieves the SoAP estimation by means of time forward voltage prognosis (TFVP) before a power pulse occurs. The trade-off between computational cost of batch-learning and accuracy during on-line adaptation was optimized resulting in a real-time system with TFVP absolute error less than 1%. The verification was performed on a software-in-the-loop test bench setup using a 53 Ah lithium-ion cell.

건전성 지표 기반 주성분분석(PCA)을 적용한 고용량 배터리 팩의 열화 인자 추출 방법 및 SOH 진단 기법 연구 (SOH Estimation and Feature Extraction using Principal Component Analysis based on Health Indicator for High Energy Battery Pack)

  • 이평연;권상욱;강덕훈;한승윤;김종훈
    • 전력전자학회논문지
    • /
    • 제25권5호
    • /
    • pp.376-384
    • /
    • 2020
  • An energy storage system is composed of lithium-ion batteries in modern applications. Batteries are regarded as storage devices for renewable and residual energy. The failure of batteries can cause the performance reduction and explosion of battery systems. High maintenance cost is essential when dealing with the problem of battery safety. Therefore an accurate health diagnosis is required to ensure the high reliability of battery systems. A battery pack is a combination of single cells in series and parallel connections. A battery pack has to consider various factors to assess battery health. Battery health involves conventional factors and additional factors, such as cell-to-cell imbalance. For large applications, state-of-health (SOH) can be inaccurate because of the lack of factors that indicate the state of the battery pack. In this study, six characterization factors are proposed for improving the SOH estimation of battery packs. The six proposed characterization factors can be regarded as health indicators (HIs). The six HIs are applied to the principal component analysis (PCA) algorithm. To reflect information regarding capacity, voltage, and temperature, the PCA algorithm extracts new degradation factors by using the six HIs. The new degradation factors are applied to a multiple regression model. Results show the advancement and improvement of SOH estimation.

에너지 기반 영역 선택과 TDOA에 의한 3차원 음원 위치 추정 (3-D Sound Source Localization using Energy-Based Region Selection and TDOA)

  • ;이은주
    • 한국정보통신학회논문지
    • /
    • 제21권2호
    • /
    • pp.294-300
    • /
    • 2017
  • 본 논문에서는 에너지 기반 영역 선택과 TDOA에 의해 3차원에서 음원의 방위와 높이를 계산하여 음원 위치를 추정하는 방법을 제안한다. 본 연구의 목적은 음원 위치 추정에서 계산시간 감축으로, 수평면 3개 신호의 에너지 비교에 의한 영역 선택과 선택된 영역의 TDOA에 의해 방위각을 계산하고, 또 높이 계산을 위한 마이크로폰 신호와 가장 큰 에너지를 갖는 평면 신호와의 TDOA로 높이각을 추정하는 방법을 제안한다. 제안한 방법에 대한 음원 추정실험 결과 수평 방위각 추정에서 평균 $0.778^{\circ}$, 높이각 추정에서 $1.296^{\circ}$의 오류를 보여 기존의 방법과 정확도에서 유사하고, 추정은 1회 신호 에너지 비교와 2회의 TDOA계산으로 가능하여 처리 시간이 단축된다.

Time Switching for Wireless Communications with Full-Duplex Relaying in Imperfect CSI Condition

  • Nguyen, Tan N.;Do, Dinh-Thuan;Tran, Phuong T.;Voznak, Miroslav
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권9호
    • /
    • pp.4223-4239
    • /
    • 2016
  • In this paper, we consider an amplify-and-forward (AF) full-duplex relay network (FDRN) using simultaneous wireless information and power transfer, where a battery-free relay node harvests energy from the received radio frequency (RF) signals from a source node and uses the harvested energy to forward the source information to destination node. The time-switching relaying (TSR) protocol is studied, with the assumption that the channel state information (CSI) at the relay node is imperfect. We deliver a rigorous analysis of the outage probability of the proposed system. Based on the outage probability expressions, the optimal time switching factor are obtained via the numerical search method. The simulation and numerical results provide practical insights into the effect of various system parameters, such as the time switching factor, the noise power, the energy harvesting efficiency, and the channel estimation error on the performance of this network. It is also observed that for the imperfect CSI case, the proposed scheme still can provide acceptable outage performance given that the channel estimation error is bounded in a permissible interval.

Analytical model for estimation of digging forces and specific energy of cable shovel

  • Stavropoulou, M.;Xiroudakis, G.;Exadaktylos, G.
    • Coupled systems mechanics
    • /
    • 제2권1호
    • /
    • pp.23-51
    • /
    • 2013
  • An analytical algorithm for the estimation of the resistance forces exerted on the dipper of a cable shovel and the specific energy consumed in the cutting-loading process is presented. Forces due to payload and to cutting of geomaterials under given initial conditions, cutting trajectory of the bucket, bucket's design, and geomaterial properties are analytically computed. The excavation process has been modeled by means of a kinematical shovel model, as well as of dynamic payload and cutting resistance models. For the calculation of the cutting forces, a logsandwich passive failure mechanism of the geomaterial is considered, as has been found by considering that a slip surface propagates like a mixed mode crack. Subsequently, the Upper-Bound theorem of Limit Analysis Theory is applied for the approximate calculation of the maximum reacting forces exerted on the dipper of the cable shovel. This algorithm has been implemented into an Excel$^{TM}$ spreadsheet to facilitate user-friendly, "transparent" calculations and built-in data analysis techniques. Its use is demonstrated with a realistic application of a medium-sized shovel. It was found, among others, that the specific energy of cutting exhibits a size effect, such that it decreases as the (-1)-power of the cutting depth for the considered example application.

Design of a Nuclear Reactor Controller Using a Model Predictive Control Method

  • Na, Man-Gyun;Jung, Dong-Won;Shin, Sun-Ho;Lee, Sun-Mi;Lee, Yoon-Joon;Jang, Jin-Wook;Lee, Ki-Bog
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2080-2094
    • /
    • 2004
  • A model predictive controller is designed to control thermal power in a nuclear reactor. The basic concept of the model predictive control is to solve an optimization problem for finite future time steps at current time, to implement only the first optimal control input among the solved control inputs, and to repeat the procedure at each subsequent instant. A controller design model used for designing the model predictive controller is estimated every time step by applying a recursive parameter estimation algorithm. A 3-dimensional nuclear reactor analysis code, MASTER that was developed by Korea Atomic Energy Research Institute (KAERI), was used to verify the proposed controller for a nuclear reactor. It was known that the nuclear power controlled by the proposed controller well tracks the desired power level and the desired axial power distribution.

연구용원자로 해체비용 산정을 위한 단위비용인자 산출 (Calculating the Unit Cost Factors for Decommissioning Cost Estimation of the Nuclear Research Reactor)

  • 정관성;이동규;정종헌;이근우
    • 방사성폐기물학회지
    • /
    • 제4권4호
    • /
    • pp.385-391
    • /
    • 2006
  • 연구용원자로 해체비용은 해체대상물에 대한 특성 및 제원에 맞게 해체작업을 분류하고 구성요소를 설정하여 단위비용인자를 바탕으로 한 공학적 비용 산정 방법으로 해체비용을 산정한다. 연구용원자로에 대한 해체비용은 크게 인건비, 장비 및 재료비로 구성이 되는데 해체작업에 소요되는 인건비는 해체대상물에 소요되는 작업시간을 바탕으로 계산을 한다. 본 논문에서는 연구용원자로 해체비용 산정 시 인건비 계산에 필요한 단위비용인자 및 작업 난이도 인자를 산출하였다.

  • PDF

에너지 연산자에 기초한 간단한 피치 추적 방법 (A Simple Pitch Tracking Algorithm based on the Energy Operator)

  • Tai-Ho Lee
    • 융합신호처리학회논문지
    • /
    • 제5권1호
    • /
    • pp.1-5
    • /
    • 2004
  • 유성음의 피치주파수 궤적을 추정할 수 있는 새로운 방법을 제시하였다. 이 방법은 에너지연산자[1]를 두 번 적용하는데 기초하고 있다. Kaiser의 에너지연산자는 정현파의 진폭과 주파수 정보를 추출하는 기능을 가지고 있다. 변조모형에 의하면 유성음은 피치 신호로 변조된 포만트들의 합성으로 파악될 수 있으므로 이 파형의 진폭 포락선을 추출해서 피치 신호와 유사한 파형을 얻는다. 이 파형의 평균 주파수를 검출하여 피치 주파수를 구하는 것이다. 앞부분은 Gopalan의 접근법[9]과 마찬가지이나, 뒷부분의 LPC-스펙트럼 분석등의 과정 대신 또 한번 에너지 연산자를 적용하도록 하여 매우 단순화되고 온라인 적용이 가능한 알고리듬을 얻었다. 추정 결과는 거친 편이지만 온라인으로 피치 궤적의 일반적 스케치를 얻는데 유용할 것으로 기대된다.

  • PDF

Uncertainty analysis of containment dose rate for core damage assessment in nuclear power plants

  • Wu, Guohua;Tong, Jiejuan;Gao, Yan;Zhang, Liguo;Zhao, Yunfei
    • Nuclear Engineering and Technology
    • /
    • 제50권5호
    • /
    • pp.673-682
    • /
    • 2018
  • One of the most widely used methods to estimate core damage during a nuclear power plant accident is containment radiation measurement. The evolution of severe accidents is extremely complex, leading to uncertainty in the containment dose rate (CDR). Therefore, it is difficult to accurately determine core damage. This study proposes to conduct uncertainty analysis of CDR for core damage assessment. First, based on source term estimation, the Monte Carlo (MC) and point-kernel integration methods were used to estimate the probability density function of the CDR under different extents of core damage in accident scenarios with late containment failure. Second, the results were verified by comparing the results of both methods. The point-kernel integration method results were more dispersed than the MC results, and the MC method was used for both quantitative and qualitative analyses. Quantitative analysis indicated a linear relationship, rather than the expected proportional relationship, between the CDR and core damage fraction. The CDR distribution obeyed a logarithmic normal distribution in accidents with a small break in containment, but not in accidents with a large break in containment. A possible application of our analysis is a real-time core damage estimation program based on the CDR.

대규모 시설에서 이용가능한 미활용 에너지의 부존량과 그 이용 가능성에 관한 조사연구-하천수.해수.하수처리수를 중심으로 (An Estimation of Quantity of Unused Energy of River Water, Seawater and Treated Sewage as Heat Source and Its Availability in Large Facilities)

  • 허재영
    • 안보군사학연구
    • /
    • 통권1호
    • /
    • pp.423-446
    • /
    • 2003
  • While the demand for energy has shown a sharp increase recently, the supply seems to be limited by the fact that the conventional fossil fuel energy or nuclear energy has its own environmental problems such as, for example, global warming or nuclear waste disposal. To overcome such limited supply of energy, the utilization of natural thermal energy such as river water and seawater as well as treated sewage can be a substantial supplement. The potential use of the unused energy has become more and more feasible these days as the heat pump technology has been advanced. In the present study, the unused energy resources are estimated on regional and monthly basis for each resource by the method proposed here in order to establish the fundamental data for its utilization. The potential use of the unused energy is a1so discussed.

  • PDF