• 제목/요약/키워드: Energy efficiency of tall buildings

검색결과 23건 처리시간 0.021초

The Impact of Double-Skin Façades on Indoor Airflow in Naturally Ventilated Tall Office Buildings

  • Yohan, Kim;Mahjoub M. Elnimeiri;Raymond J. Clark
    • 국제초고층학회논문집
    • /
    • 제12권2호
    • /
    • pp.129-136
    • /
    • 2023
  • Natural ventilation has proven to be an effective passive strategy in improving energy efficiency and providing healthy environments. However, such a strategy has not been commonly adopted to tall office buildings that traditionally rely on single-skin façades (SSFs), due to the high wind pressure that creates excessive air velocities and occupant discomfort at upper floors. Double-skin façades (DSFs) can provide an opportunity to facilitate natural ventilation in tall office buildings, as the fundamental components such as the additional skin and openings create a buffer to regulate the direct impact of wind pressure and the airflow around the buildings. This study investigates the impact of modified multi-story type DSFs on indoor airflow in a 60-story, 780-foot (238 m) naturally ventilated tall office building under isothermal conditions. Thus, the performance of wind effect related components was assessed based on the criteria (e.g., air velocity and airflow distribution), particularly with respect to opening size. Computational fluid dynamics (CFD) was utilized to simulate outdoor airflow around the tall office building, and indoor airflow at multiple heights in case of various DSF opening configurations. The simulation results indicate that the outer skin opening is the more influential parameter than the inner skin opening on the indoor airflow behavior. On the other hand, the variations of inner skin opening size help improve the indoor airflow with respect to the desired air velocity and airflow distribution. Despite some vortexes observed in the indoor spaces, cross ventilation can occur as positive pressure on the windward side and negative pressure on the other sides generate productive pressure differential. The results also demonstrate that DSFs with smaller openings suitably reduce not only the impact of wind pressure, but also the concentration of high air velocity near the windows on the windward side, compared to SSFs. Further insight on indoor airflow behaviors depending on DSF opening configurations leads to a better understanding of the DSF design strategies for effective natural ventilation in tall office buildings.

Towards Resource-Generative Skyscrapers

  • Imam, Mohamed;Kolarevic, Branko
    • 국제초고층학회논문집
    • /
    • 제7권2호
    • /
    • pp.161-170
    • /
    • 2018
  • Rapid urbanization, resource depletion, and limited land are further increasing the need for skyscrapers in city centers; therefore, it is imperative to enhance tall building performance efficiency and energy-generative capability. Potential performance improvements can be explored using parametric multi-objective optimization, aided by evaluation tools, such as computational fluid dynamics and energy analysis software, to visualize and explore skyscrapers' multi-resource, multi-system generative potential. An optimization-centered, software-based design platform can potentially enable the simultaneous exploration of multiple strategies for the decreased consumption and large-scale production of multiple resources. Resource Generative Skyscrapers (RGS) are proposed as a possible solution to further explore and optimize the generative potentials of skyscrapers. RGS can be optimized with waste-energy-harvesting capabilities by capitalizing on passive features of integrated renewable systems. This paper describes various resource-generation technologies suitable for a synergetic integration within the RGS typology, and the software tools that can facilitate exploration of their optimal use.

Toward Net-Zero Energy Retrofitting: Building-Integrated Photovoltaic Curtainwalls

  • Kim, Kyoung Hee;Im, Ok-Kyun
    • 국제초고층학회논문집
    • /
    • 제10권1호
    • /
    • pp.35-43
    • /
    • 2021
  • With the rapid urbanization and growing energy use intensity in the built environment, the glazed curtainwall has become ever more important in the architectural practice and environmental stewardship. Besides its energy efficiency roles, window has been an important transparent component for daylight penetration and a view-out for occupant satisfaction. In response to the climate crisis caused by the built environment, this research focuses on the study of net-zero energy retrofitting by using a new building integrated photovoltaic (BIPV) curtainwall as a sustainable alternative to conventional window systems. Design variables such as building orientations, climate zones, energy attributes of BIPV curtainwalls, and glazed area were studied, to minimize energy consumption and discomfort hours for three cities representing hot (Miami, FL), mixed (Charlotte, NC), and cold (Minneapolis, MN). Parametric analysis and Pareto solutions are presented to provide a comprehensive explanation of the correlation between design variables and performance objectives for net-zero energy retrofitting applications.

The Environmental Impact of Tall vs Small: A Comparative Study

  • Drew, Christopher;Nova, Katrina Fernandez;Fanning, Keara
    • 국제초고층학회논문집
    • /
    • 제4권2호
    • /
    • pp.109-116
    • /
    • 2015
  • The concept of vertical living has been hailed as a solution to control fast growth and urbanization of cities worldwide. As super tall residential projects become more common and sustainability considerations become more necessary, their efficiency has been called into question. How do vertical residential developments compare with suburban homes? What are the environmental advantages and disadvantages of vertical communities? Is there a middle ground? We present the results from an AS+GG study that compares the environmental performance of different housing typologies ranging from a 215 supertall building to single family residences, including several scales in between. Our samples comprise 2,000 residential units per type and include the infrastructure needed to support them. We analyzed land use, energy use, and lifecycle carbon emissions for each typology. The results show that different typologies perform better depending on the parameter being assessed. We discuss these findings; assess overall performance, and present conclusions.

수직 공간 내에서 고도변화에 따른 기압차로 인한 기류현상 예측에 관한 연구 (Effect of Atmospheric Pressure Difference with Altitude on the Induced Airflow Velocity in a Vertical Closed Conduit)

  • 정광섭;김철호
    • 설비공학논문집
    • /
    • 제21권7호
    • /
    • pp.409-416
    • /
    • 2009
  • On 21st century, global warming is the most serious environmental problem threatening the existence of lives on the earth. One of the serious reasons of this nature phenomena was due to the greenhouse effect by carbon dioxide mainly produced with the combustion process of hydro-carbon fuel. and it is mostly produced. In the high oil prices age, intensification of energy efficiency promotion in the building sector is required. Windows are dominating large percentage whole building loads, and are regarding as the primary target of energy efficiency. The purpose of this research is on the obtaining of the renewable energy source in the skyscrape buildings in the metropolitan area. The air movement is happens due to the atmospheric pressure differences in the air. Due to this simple physical theory, it is easily expected to obtain the useful renewable nature energy through the high -raised vertical air stack installed in a tall building. However, there is one problem that should be resolved which is called air-hole effect in the sky -scrape buildings.

Study on Integrated Workflow for Designing Sustainable Tall Building - With Parametric method using Rhino Grasshopper and DIVA for Daylight Optimization

  • Kim, Hyeong-ill
    • KIEAE Journal
    • /
    • 제16권5호
    • /
    • pp.21-28
    • /
    • 2016
  • Purpose: The Objective of this study is to explore the capabilities of an integrated modelling and simulation workflow when applied to an experiment-based research process, aimed at deriving daylight optimization strategies specific to tall buildings. Methods: Two methods were devised to apply this workflow with the help of DIVA and Rhino/Grasshopper. The first method is a multiple variant analysis by setting up an appropriate base case and analysing its daylight and energy performance, forming the basis of comparison for subsequent cases for design variants. The second method involved setting up the base case within a site context and conducting a solar irradiation study. An architectural variables such as overhang and shading device, were then defined as inputs in the parametric definition in Grasshopper to control the selected variable. Results: While the first method took advantage of the speed and efficiency of the integrated workflow, the second method was derived based on the ability to directly process simulation data within the integrated, single-software platform of the proposed workflow. Through these methods, different architectural strategies were explored, both to increase daylight penetration and to reduce radiant heat gain. The focus is on methods by which this workflow can be applied to facilitate the experimental derivation of daylight optimization strategies that are specific to tall building design.

파력발전용 가변수주진동장치의 운동에 대한 실험적 연구(1. 단일 부유체) (An experimental study on motions of a VLCO for wave power generation(1. Simple floating body))

  • 이승철;구자삼
    • 동력기계공학회지
    • /
    • 제17권2호
    • /
    • pp.103-107
    • /
    • 2013
  • The structure of a variable liquid column oscillator(a VLCO) is analogous to that of the tuned liquid column damper used to suppress oscillatory motion in large structures like tall buildings and cargo ships. The VLCO is a system absorbing high kinetic energy of accelerated motions of multiple floating bodies in the effect of air springs occurred by installation of inner air chambers. Thus, VLCO can improve the efficiency of energy than wave energy converters of the activating object type made in Pelamis Company. In this research, the experiment was performed that a simple floating body was filled with internal fluid of same draft. The characteristics of motions were evaluated in each case of the opening or closing of the upper valves.

파력발전용 가변수주진동장치의 운동해석 (Motion analysis of a VLCO for wave power generation)

  • 이승철;구자삼
    • 동력기계공학회지
    • /
    • 제18권3호
    • /
    • pp.36-41
    • /
    • 2014
  • The structure of a variable liquid column oscillator(a VLCO) is analogous to that of the tuned liquid column damper used to suppress oscillatory motion in large structures like tall buildings and cargo ships. The VLCO is a system absorbing high kinetic energy of accelerated motions of the multiple floating bodies in the effect of air springs occurred by installation of inner air chambers. Thus, VLCO can improve the efficiency of energy than wave energy converters of the activating object type made in Pelamis Company. In this research, the experiment was performed in two models of same draft. The one is that weights were filled, and the other is that water was filled. The numerical results were estimated by assuming that do not exist internal flow, and the results were compared with the results of experiments.

가변진동수주장치의 흘수변화에 따른 운동특성연구 (단일 부유체) (A study on Motion Characteristics of VLCO by Draft (Simple floating body))

  • 이승철;배성용
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.16-21
    • /
    • 2014
  • The structure of the variable liquid column oscillator(VLCO) is analogous to that of the tuned liquide column damper used to suppress oscillatory motion in large structures like tall buildings and cargo ships. VLCO is the technology to absorb high potential energy made by process of accelerated motions to occur the effect of an air spring by installation of inner air chamber. So, the application of VLCO can obtain to improve efficiency of energy than wave energy converters made in Pelamis Company. In this research, the experiments were carried out for the motion characteristics of simple floating body by varying the amount of internal fluid. The experimental results were compared with the calculated results.

Experimental Study of Moisture-Wicking Fabric as Cooling Pad for Novel Rotary Direct Evaporative Cooler

  • Sang-Hwan Park;Jae-Weon Jeong
    • 국제초고층학회논문집
    • /
    • 제12권4호
    • /
    • pp.335-341
    • /
    • 2023
  • This study proposes a novel rotary direct evaporative cooler and investigates the potential of a moisture-wicking fabric as a cooling pad for the proposed evaporative cooler. The rotary direct evaporative cooler rotates the cooling pad to reduce the water and energy consumption of the pump compared to those of existing direct evaporative coolers. A moisture-wicking fabric is considered as the material of the cooling pad, because of its high moisture-wicking property, enhancing water evaporation. Experiments are performed under various inlet air conditions while measuring the air temperature, relative humidity, air velocity, and differential pressure. The evaporative cooling efficiency and impacts of the inlet air temperature and air velocity on the cooling performance are also evaluated. The results demonstrate the potential of the moisture-wicking fabric as cooling pad of direct evaporative cooler.