• Title/Summary/Keyword: Energy efficiency of mobile devices

Search Result 80, Processing Time 0.038 seconds

Energy-Efficient Algorithm for Assigning Verification Tasks in Cloud Storage

  • Xu, Guangwei;Sun, Zhifeng;Yan, Cairong;Shi, Xiujin;Li, Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.1-17
    • /
    • 2017
  • Mobile Cloud Computing has become a promising computing platform. It moves users' data to the centralized large data centers for users' mobile devices to conveniently access. Since the data storage service may not be fully trusted, many public verification algorithms are proposed to check the data integrity. However, these algorithms hardly consider the huge computational burden for the verifiers with resource-constrained mobile devices to execute the verification tasks. We propose an energy-efficient algorithm for assigning verification tasks (EEAVT) to optimize the energy consumption and assign the verification tasks by elastic and customizable ways. The algorithm prioritizes verification tasks according to the expected finish time of the verification, and assigns the number of checked blocks referring to devices' residual energy and available operation time. Theoretical analysis and experiment evaluation show that our algorithm not only shortens the verification finish time, but also decreases energy consumption, thus improving the efficiency and reliability of the verification.

Design of Image Management Application for Mobile Phone (모바일 폰의 이미지 관리 애플리케이션의 설계)

  • Park, Hung-bog;Seo, Jung-hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.429-430
    • /
    • 2018
  • The introduction of mobile devices increased the need to apply limitations such as mobile devices' memory, speed, energy, and bandwidth on the designs of searching images. There is a demand to reduce such limitations on searching images on the mobile phone. Hence, this paper proposes a design that adds tags on pictures to manage the images in mobile environment, allowing efficient searches and deletion of duplicate files based on the similarities of the images. The proposed method does not compromise its efficiency by increasing costs; it also reduces the volume of data needed for mobile devices.

  • PDF

Dynamic Computation Offloading Based on Q-Learning for UAV-Based Mobile Edge Computing

  • Shreya Khisa;Sangman Moh
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.68-76
    • /
    • 2023
  • Emerging mobile edge computing (MEC) can be used in battery-constrained Internet of things (IoT). The execution latency of IoT applications can be improved by offloading computation-intensive tasks to an MEC server. Recently, the popularity of unmanned aerial vehicles (UAVs) has increased rapidly, and UAV-based MEC systems are receiving considerable attention. In this paper, we propose a dynamic computation offloading paradigm for UAV-based MEC systems, in which a UAV flies over an urban environment and provides edge services to IoT devices on the ground. Since most IoT devices are energy-constrained, we formulate our problem as a Markov decision process considering the energy level of the battery of each IoT device. We also use model-free Q-learning for time-critical tasks to maximize the system utility. According to our performance study, the proposed scheme can achieve desirable convergence properties and make intelligent offloading decisions.

An Energy-Efficient Mobile P2P Streaming Structure Using Agent Peers (에이전트 피어를 이용한 에너지 효율적인 모바일 P2P 스트리밍 구조)

  • Kim, Sang-Jin;Kim, Eun-Sam
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.121-129
    • /
    • 2011
  • With advances in wireless networks and advent of powerful mobile devices such as smart phones, the demand for mobile IPTV services has been increasing. It is essential to minimize the energy consumption of mobile devices because their battery capacity is limited. In this paper, we therefore propose a new streaming structure in P2P-based mobile IPTV systems to minimize the energy consumption of mobile peers using agent peers. Agent peers can decrease the energy consumption of mobile peers significantly by performing streaming functionality and exchanging control messages for joining and leaving overlay networks in place of corresponding mobile peers. Finally, by simulation experiments using an energy model, we show that our proposed streaming structure can increase the lifetime of mobile peers using agent peers.

Joint Optimization for Residual Energy Maximization in Wireless Powered Mobile-Edge Computing Systems

  • Liu, Peng;Xu, Gaochao;Yang, Kun;Wang, Kezhi;Li, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5614-5633
    • /
    • 2018
  • Mobile Edge Computing (MEC) and Wireless Power Transfer (WPT) are both recognized as promising techniques, one is for solving the resource insufficient of mobile devices and the other is for powering the mobile device. Naturally, by integrating the two techniques, task will be capable of being executed by the harvested energy which makes it possible that less intrinsic energy consumption for task execution. However, this innovative integration is facing several challenges inevitably. In this paper, we aim at prolonging the battery life of mobile device for which we need to maximize the harvested energy and minimize the consumed energy simultaneously, which is formulated as residual energy maximization (REM) problem where the offloading ratio, energy harvesting time, CPU frequency and transmission power of mobile device are all considered as key factors. To this end, we jointly optimize the offloading ratio, energy harvesting time, CPU frequency and transmission power of mobile device to solve the REM problem. Furthermore, we propose an efficient convex optimization and sequential unconstrained minimization technique based combining method to solve the formulated multi-constrained nonlinear optimization problem. The result shows that our joint optimization outperforms the single optimization on REM problem. Besides, the proposed algorithm is more efficiency.

Energy-Efficiency Evaluation of Low-Power Random Number Generators (저전력을 소모하는 난수발생기의 성능 평가)

  • 윤정민;김지홍;김진효
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.427-440
    • /
    • 2003
  • Many mobile applications, such as games, security software and mathematical applications, use a random number generator(RNG). Since mobile devices operate under a limited battery capacity, the low energy consumption is one of key system requirements. For mobile applications based on an RNG, it is important to use low-power RNGs. In this article, we evaluate the energy efficiency of several well-known RNG algorithms and suggest guidelines for selecting RNGs suitable for mobile application.

Energy-Efficient Context Monitoring Methods for Android Devices (안드로이드 디바이스를 위한 에너지 효율적 컨텍스트 모니터링 기법)

  • Kim, Moon Kwon;Lee, Jae Yoo;Kim, Soo Dong
    • Journal of Software Engineering Society
    • /
    • v.26 no.3
    • /
    • pp.53-62
    • /
    • 2013
  • Along with increasing supplies of smart devices, a proliferation of context-aware applications is came. However, acquiring contexts through sensors requires considerable energy consumption. It has became big constraints on running many context-aware applications in mobile devices having limited battery capacity. Hence, energy-efficient methods for monitoring contexts are highly required. In this paper, we propose four context monitoring methods, analyse energy consumption in each method, and provide guidelines for applying the methods. It is effective to decrease energy consumption for monitoring contexts with applying the methods. To assess the proposed methods, we implement an application that is aware of a user's motion and show quantitative comparison between each of the methods.

  • PDF

Optimizing Energy Efficiency in Mobile Ad Hoc Networks: An Intelligent Multi-Objective Routing Approach

  • Sun Beibei
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.2
    • /
    • pp.107-114
    • /
    • 2024
  • Mobile ad hoc networks represent self-configuring networks of mobile devices that communicate without relying on a fixed infrastructure. However, traditional routing protocols in such networks encounter challenges in selecting efficient and reliable routes due to dynamic nature of these networks caused by unpredictable mobility of nodes. This often results in a failure to meet the low-delay and low-energy consumption requirements crucial for such networks. In order to overcome such challenges, our paper introduces a novel multi-objective and adaptive routing scheme based on the Q-learning reinforcement learning algorithm. The proposed routing scheme dynamically adjusts itself based on measured network states, such as traffic congestion and mobility. The proposed approach utilizes Q-learning to select routes in a decentralized manner, considering factors like energy consumption, load balancing, and the selection of stable links. We present a formulation of the multi-objective optimization problem and discuss adaptive adjustments of the Q-learning parameters to handle the dynamic nature of the network. To speed up the learning process, our scheme incorporates informative shaped rewards, providing additional guidance to the learning agents for better solutions. Implemented on the widely-used AODV routing protocol, our proposed approaches demonstrate better performance in terms of energy efficiency and improved message delivery delay, even in highly dynamic network environments, when compared to the traditional AODV. These findings show the potential of leveraging reinforcement learning for efficient routing in ad hoc networks, making the way for future advancements in the field of mobile ad hoc networking.

Comparison of Efficiency Analysis of Device Energy Used in Object Communication (사물통신에 사용되는 디바이스 에너지의 효율화 분석 고찰)

  • Hwang, Seong-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1106-1112
    • /
    • 2017
  • As the Internet of Things (IOT) is evolving into an industry-wide service and expanded to the concept of Internet of Everything (IoE), services using IoT devices are easily accessible in everyday life. IoT requires more devices to collect information and is expected to increase the number of devices by 50 billion by 2020, and is about the number of devices currently available. Gradually, the number of mobile devices, smart devices, and Internet devices is increasing, and energy resources are required to operate such a large number of Internet devices, and the energy consumed by each device is small. In this paper, we consider the number of devices to be increased and generate a signal irrespective of transmission information so that power other than the energy required for signal transmission is consumed. When transmission information is generated and near to a receiver to receive information, The method to be used as an analysis is designed through experiments.

Real-time Scheduling on Heterogeneous Multi-core Architecture for Energy Conservation of Smart Mobile Devices (스마트 모바일 장치의 에너지 보존성을 높이기 위한 비대칭 멀티 코어 기반 실시간 태스크 스케쥴링)

  • Lim, Sung-Hwa
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1219-1224
    • /
    • 2018
  • Nowaday, smart mobile devices on Internet of Things are required to process and deliver greate amount of data in real-time. Therefore, heterogeneous mult-core architecture such the big.LITTLE core architecture, which shows high energy conservation while guaranteeing high performance, are widely employed on up to date smart mobile devices. The LITTLE cores should be highly utilized to gain higher energy conservation because LITTLE cores have much higher energy efficiency than big cores. In this paper, we propose a core selection algorithm, which tries to firstly assign a real-time task on a LITTLE core rather a big core while the task can be finished within its own deadline. We also perform simulation as performance evaluation to show that our proposed algorithm shows higher energy conservation while guaranteeing the required performance.