• 제목/요약/키워드: Energy dissipation capability

검색결과 58건 처리시간 0.026초

Optimized design of dual steel moment resisting system equipped with cross-anchored self-centering buckling restrained chevron brace

  • Khaneghah, Mohammadreza Ahadpour;Dehcheshmaeh, Esmaeil Mohammadi;Broujerdian, Vahid;Amiri, Gholamreza Ghodrati
    • Earthquakes and Structures
    • /
    • 제23권2호
    • /
    • pp.139-150
    • /
    • 2022
  • In most self-center braces, decreasing residual deformation is possible only by increasing pretension force, which results in lower energy dissipation capacity. On the other hand, increasing energy dissipation capacity means higher values of residual deformation. The goal of this research was to find the best design for a self-centering buckling restrained brace (SC-BRB) system by balancing self-centering capability and energy dissipation. Three, six, and nine-story structures were investigated using OpenSees software and the TCL programming language to achieve this goal. For each height, 62 different SC-BRBs were considered using different values for the pretension force of cables, the area of the buckling restrained brace (BRB) core plate, and the yield stress of the core plate. The residual deformation and dissipated energy of all the models were calculated using nonlinear analyses after cyclic loading was applied. The optimum design for each height was determined among all the models and was compared to the structure equipped with the usual BRB. The residual deformation of the framed buildings was significantly reduced, according to the findings. Also the reduction of the energy dissipation was acceptable. The optimum design of SC-BRB in 6-story building has the most reduction percent in residual deformation, it can reduce residual deformation of building 83% while causing only a 57% of reduction in dissipated energy. The greatest reduction in residual deformation versus dissipated energy reduction was for the optimum SC-BRB design of 9-story building, results indicated that it can reduce residual deformation of building 69% while causing only a 42% of reduction in dissipated energy.

Cyclic behavior of extended end-plate connections with shape memory alloy bolts

  • Fanaie, Nader;Monfared, Morteza N.
    • Structural Engineering and Mechanics
    • /
    • 제60권3호
    • /
    • pp.507-527
    • /
    • 2016
  • The use of shape memory alloys (SMAs) has been seriously considered in seismic engineering due to their capabilities, such as the ability to tolerate cyclic deformations and dissipate energy. Five 3-D extended end-plate connection models have been created, including one conventional connection and four connections with Nitinol bolts of four different prestress forces. Their cyclic behaviors have been investigated using the finite element method software ANSYS. Subsequently, the moment-rotation responses of the connections have been derived by subjecting them to cyclic loading based on SAC protocol. The results obtained in this research indicate that the conventional connections show residual deformations despite their high ductility and very good energy dissipation; therefore, they cannot be repaired after loading. However, while having good energy dissipation and high ductility, the connections equipped with Nitinol bolts have good recentering capability. Moreover, a connection with the mentioned specifications has been modeled, except that only the external bolts replaced with SMA bolts and assessed for seismic loading. The suggested connection shows high ductility, medium energy dissipation and very good recentering. The main objective of this research is to concentrate the deformations caused by cyclic loading on the connection in order to form super-elastic hinge in the connection by the deformations of the shape memory alloy bolts.

Simulations of the hysteretic behavior of thin-wall cold-formed steel members under cyclic uniaxial loading

  • Dong, Jun;Wang, Shiqi;Lu, Xi
    • Structural Engineering and Mechanics
    • /
    • 제24권3호
    • /
    • pp.323-337
    • /
    • 2006
  • In this paper, the hysteretic behaviors of channel and C-section cold-formed steel members (CFSMs) under cyclic axial loading were simulated with the finite element method. Geometric and material nonlinearities, Bauschinger effect, strain hardening and strength improvement at corner zones were taken into account. Extensive numerical results indicated that, as the width-to-thickness ratio increases, local buckling occurs prematurely. As a result, the hysteretic behavior of the CFSMs degrades and their energy dissipation capability decreases. Due to the presence of lips, the hysteretic behavior of a C-section steel member is superior to that of its corresponding channel section. The intermediate stiffeners in a C-section steel member postpone the occurrence of local buckling and change its shapes, which can greatly improve its hysteretic behavior and energy dissipation capability. Therefore, the CFSMs with a large width-to-thickness ratio can be improved by adding lips and intermediate stiffeners, and can be used more extensively in residential buildings located in seismic areas.

Uni-axial behavior of energy dissipative steel cushions

  • Ozkaynak, Hasan;Khajehdehi, Arastoo;Gullu, Ahmet;Azizisales, Faraz;Yuksel, Ercan;Karadogan, Faruk
    • Steel and Composite Structures
    • /
    • 제27권6호
    • /
    • pp.661-674
    • /
    • 2018
  • Seismic excitations may impart a significant amount of energy into structures. Modern structural design attitudes tend to absorb some part of this energy through special dissipaters instead of heavy plastic deformations on the structural members. Different types of dissipater have been generated and utilized in various types of structures in last few decades. The expected earthquake damage is mainly concentrated on these devices and they may be replaced after earthquakes. In this study, a low-cost device called energy dissipative steel cushion (EDSC) made of flat mild steel was developed and tested in the Structural and Earthquake Engineering Laboratory (STEELab) of Istanbul Technical University (ITU). The monotonic and cyclic tests of EDSC were performed in transversal and longitudinal directions discretely. Very large deformation capability and stable hysteretic behavior are some response properties observed from the tests. Load vs. displacement relations, hysteretic energy dissipation properties as well as the closed form equations to predict the behavior parameters are presented in this paper.

A new metallic energy dissipation system for steel frame based on negative Poisson's ratio structures

  • Milad Masoodi;Ahmad Ganjali;Hamidreza Irani;Aboozar Mirzakhani
    • Structural Engineering and Mechanics
    • /
    • 제89권1호
    • /
    • pp.93-102
    • /
    • 2024
  • Using negative Poisson's ratio materials, an innovative metallic-yielding damper is introduced for the first time in this study. Through the use of ABAQUS commercial software, a nonlinear finite element analysis is conducted to determine the performance of the proposed system. Mild steel plates with elliptical holes are used for these types of dampers, which dissipate energy through an inelastic deformation of the constitutive material. To assess the capability of the proposed damper, nonlinear quasi-static finite element analyses have been conducted on the damper with a variety of geometric parameters. According to the results, the proposed system is ductile and has a high capacity to dissipate energy. The proposed auxetic damper has a specific energy absorption of 910.8 J/kg and a ductility of 33.6. Therefore, this damper can dissipate a large amount of earthquake input energy without buckling by increasing the buckling load of the brace with its ductile behavior. In addition, it was found that by incorporating auxetic dampers in the steel frame, the frame was made harder, stronger, and ductile and its energy absorption increased by 300%.

Experimental study on all-bolted joint in modularized prefabricated steel structure

  • Wu, Zhanjing;Tao, Zhong;Liu, Bei;Zuo, Heng
    • Structural Engineering and Mechanics
    • /
    • 제73권6호
    • /
    • pp.613-620
    • /
    • 2020
  • The research study is focuses on a form of all-bolted joint with the external ring stiffening plate in the prefabricated steel structure. The components are bolted at site after being fabricated in the factory. Six specimens were tested under cyclic loading, and the effects of column axial compression ratio, concrete-filled column, beam flange sub plate, beam web angle cleats, and spliced column on the failure mode, hysteretic behavior and ductility of the joints were analyzed. The results shown that the proposed all-bolted joint with external ring stiffening plate performed high bearing capability, stable inflexibility degradation, high ductility and plump hysteretic curve. The primary failure modes were bucking at beam end, cracking at the variable section of the external ring stiffening plate, and finally welds fracturing between external ring stiffening plate and column wall. The bearing capability of the joints reduced with the axial compression ratio increased. The use of concrete-filled steel tube column can increase the bearing capability of joints. The existence of the beam flange sub plate, and beam web angle cleat improves the energy dissipation, ductility, bearing capacity and original rigidity of the joint, but also increase the stress concentration at the variable section of the external reinforcing ring plate. The proposed joints with spliced column also performed desirable integrity, large bearing capacity, initial stiffness and energy dissipation capacity for engineering application by reasonable design.

Performance of cyclic loading for structural insulated panels in wall application

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • 제14권6호
    • /
    • pp.587-604
    • /
    • 2013
  • There are few technical documents regulated structural performance and engineering criteria in domestic market for Structural insulated panels in Korea. This paper was focused to identify fundamental performance under monotonic loading and cyclic loading for SIPs in shear wall application. Load-displacement responses of total twelve test specimens were recorded based on shear stiffness, strength, ultimate load and displacement. Finally energy dissipation of each specimen was analyzed respectively. Monotonic test results showed that ultimate load was 44.3 kN, allowable shear load was 6.1 kN/m, shear stiffness was 1.2 MN/m, and ductility ratio was 3.6. Cyclic test was conducted by two kinds of specimens: single panel and double panels. Cyclic loading results, which were equivalent to monotonic loading results, showed that ultimate load was 45.4 kN, allowable shear load was 6.3 kN/m. Furthermore the accumulated energy dissipation capability for double panels was as 2.3 times as that for single panel. Based on results of structural performance test, it was recommended that the allowable shear load for panels should be 6.1 kN/m at least.

상변화물질을 이용한 PMMA 복합필름의 방열 성능 향상에 관한 연구 (A Study on Heat Dissipation Characteristics of PMMA Composite Films with Phase Change Material)

  • 권준혁;윤범용;조승현;;김형익;김동현;박경의;서종환
    • Composites Research
    • /
    • 제30권5호
    • /
    • pp.288-296
    • /
    • 2017
  • 본 연구에서는 전자기기 사용에 이슈가 되고 있는 발열 문제를 해결하고자 상변화물질(PCM)의 잠열 특성을 이용하여 폴리메틸메타크릴레이트(PMMA) 복합필름을 제조하고 방열 성능을 평가하였다. 이를 위해 용융온도가 서로 다른 두 가지의 상변화물질을 사용하여 제작한 PCM/PMMA 복합필름의 열적 특성을 비교 분석하여 다양한 사용조건에 따른 유효성을 검증하였고, Compression Molding 방법과 PCM Paste Sealing 방법에 따른 PCM/PMMA 복합필름의 방열 특성을 비교 분석하여 최대의 방열 효과를 달성할 수 있는 최적의 방법을 도출하였다. 또한 PCM/PMMA 복합필름의 방열 성능을 최대화하기 위해 열전도율이 높은 흑연과 그래핀을 추가로 적층하여 제조한 Hybrid 복합필름의 열적 특성을 분석하였고, 이들을 통해 향상된 방열 성능을 실험적으로 검증하였다. 본 연구를 통해 개발된 방열 성능이 우수한 복합필름은 다양한 전자기기에 활용되어 발열 문제를 효과적으로 해결할 수 있을 것으로 기대된다.

마찰 에너지 소산과 자동 복원력을 활용한 가새 댐퍼 시스템의 최적 설계와 구조적 활용 (Optimum Design and Structural Application of the Bracing Damper System by Utilizing Friction Energy Dissipation and Self-Centering Capability)

  • 허종완;박지웅
    • 대한토목학회논문집
    • /
    • 제34권2호
    • /
    • pp.377-387
    • /
    • 2014
  • 본 연구는 지진에 대한 구조물의 손상을 최소화 하기 위하여 슬립 저항력을 활용한 새로운 형태의 마찰 댐퍼형 가새 시스템의 설계와 개발을 주로 다루고자 한다. 가새 부재 내에서 전단력에 의한 마찰 거동으로 상당량의 에너지를 수동적으로 소산하기 위하여 플레이트 전단 이음부 위에 슬롯 형태의 볼트 구멍을 설치한다. 여기에 전단 마찰 거동으로 인해 발생되는 잔류변형을 줄이고자 상온에서 원형복원이 가능한 초탄성 형상합금 와이어를 꼬아서 만든 연선을 설치하여 댐퍼 시스템 내에 복원성을 증진 시켰다. 기존에 주로 사용된 수동적인 변위 제어 장치와 비교하여 본 연구에서 다루고자 하는 자동복원이 가능한 마찰 댐퍼형 가새 시스템은 중심 가새 프레임 구조물에 손쉽게 설치하여 지진발생 후에 구조물에 발생하는 층간 잔류변위를 최소화하여 유지 보수에 소모되는 비용의 대폭적인 절감을 기대할 수 있다. 본 연구에서는 자동복원이 가능한 마찰 댐퍼형 가새 시스템의 역학적인 거동 메커니즘을 살펴보고 실험값으로 보정되어 신뢰성을 확보한 스프링 모델을 사용하여 해석을 실시하였다. 시스템에 다양한 설계 변수를 적용하여 복원성과 에너지 소산 능력 측면에서 제안된 댐퍼의 성능 동향을 분석을 하고 최적의 설계 방식을 제안하고자 한다. 마지막으로 자동복원이 가능한 마찰 댐퍼를 중심 가새 프레임 구조물에 설치하여 비선형 동적 해석을 실시하고 기존의 시스템과 비교하여 성능적인 우수성을 입증하고자 한다.

Optimized QCA SRAM cell and array in nanoscale based on multiplexer with energy and cost analysis

  • Moein Kianpour;Reza Sabbaghi-Nadooshan;Majid Mohammadi;Behzad Ebrahimi
    • Advances in nano research
    • /
    • 제15권6호
    • /
    • pp.521-531
    • /
    • 2023
  • Quantum-dot cellular automata (QCA) has shown great potential in the nanoscale regime as a replacement for CMOS technology. This work presents a specific approach to static random-access memory (SRAM) cell based on 2:1 multiplexer, 4-bit SRAM array, and 32-bit SRAM array in QCA. By utilizing the proposed SRAM array, a single-layer 16×32-bit SRAM with the read/write capability is presented using an optimized signal distribution network (SDN) crossover technique. In the present study, an extremely-optimized 2:1 multiplexer is proposed, which is used to implement an extremely-optimized SRAM cell. The results of simulation show the superiority of the proposed 2:1 multiplexer and SRAM cell. This study also provides a more efficient and accurate method for calculating QCA costs. The proposed extremely-optimized SRAM cell and SRAM arrays are advantageous in terms of complexity, delay, area, and QCA cost parameters in comparison with previous designs in QCA, CMOS, and FinFET technologies. Moreover, compared to previous designs in QCA and FinFET technologies, the proposed structure saves total energy consisting of overall energy consumption, switching energy dissipation, and leakage energy dissipation. The energy and structural analyses of the proposed scheme are performed in QCAPro and QCADesigner 2.0.3 tools. According to the simulation results and comparison with previous high-quality studies based on QCA and FinFET design approaches, the proposed SRAM reduces the overall energy consumption by 25%, occupies 33% smaller area, and requires 15% fewer cells. Moreover, the QCA cost is reduced by 35% compared to outstanding designs in the literature.