• Title/Summary/Keyword: Energy dispersive spectrometer

Search Result 193, Processing Time 0.023 seconds

Analysis and Investigation of Archaeological Chemistry on the Class Beads of Dujeong-dong site of Cheonan, Korea (천안 두정동 출토 유리구슬의 고고화학적 분석 고찰)

  • Song, Yu-Na;Kim, Gyu-Ho
    • Journal of Conservation Science
    • /
    • v.18 s.18
    • /
    • pp.5-18
    • /
    • 2006
  • Dujeong-dong site of Cheonan is known as the site of Baekje period in the first half of the fourth century. This study investigated the visible properties and the chemical composition of the 18 pieces of the glass found in the site, and considered scientific properties and periodic interrelationship of the glass on the basis of the analysis result. The observation of the visible properties and microstructure of ancient glass was performed with both an electron microscope and an optical microscope, and the chemical composition was conducted by way of both quantitative and qualitative analysis using Scanning Electron Microscope(SEM) with Energy Dispersive Spectrometer(EDS). In the analysis result, various chemical composition systems are identified in the glass beads of Dujeong-dong site, such as lead-barium, soda and potash glass, and also different shapes were found such as gold foil glass beads, tubular beads, and round beads. It is estimated that the classification of glass by means of its chemical composition was also closely related to the color of glass.

  • PDF

Experimental investigation of impact-sliding interaction and fretting wear between tubes and anti-vibration bars in steam generators

  • Guo, Kai;Jiang, Naibin;Qi, Huanhuan;Feng, Zhipeng;Wang, Yang;Tan, Wei
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1304-1317
    • /
    • 2020
  • The tubes in a heat exchanger, such as a steam generator (SG), are subjected to crossflow, and interaction between tubes and supports can happen, which can cause fretting wear of tubes. Although many experiments and models have been established, some detailed mechanisms are still not sufficiently clear. In this work, more attention is paid to obtain the regulation of impact and sliding in the complex process and many factors, such as excitation forces and clearances. The responses and contact forces were analyzed to obtain clear understanding of the influences of these factors. Room temperature tests in the air were established. The results show that the effect of clearance on the normal work rate is not monotonous and instead has two peaks. The force ratio can influence the normal work rate by changing the distribution of contact angles, which can result in higher sliding in the contact process. Fretting wear tests are conducted, and the wear surfaces are analyzed by a scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX). The results of this work can serve as a reference for impactsliding contact analysis between AVBs and tubes in steam generators.

Preparation of Polypropylene Grafted Polystyrene Sulfonic Acid Membranes for DMFCs in Supercritical CO2 (초임계 이산화탄소 함침을 이용한 연료전지용 폴리스타이렌/폴리프로필렌 복합막의 제조)

  • Byun, Jungyeon;Sauk, Junho;Synn, Wookyun;Kim, Hwayong
    • Clean Technology
    • /
    • v.11 no.3
    • /
    • pp.141-146
    • /
    • 2005
  • The composite membranes were made by grafting using supercritical carbon dioxide (scCO2) impregnation and polymerization procedures. The membranes were synthesized by changing amount of monomer. The polypropylene grafted polystyrene sulfonic acid (PP-g-pssa) membranes were characterized with various methods. The morphology and structure of PP-g-pssa membranes were analyzed with scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). As amount of monomer was increased, ion conductivity, cell performance was increased and methanol permeability was decreased. However PP-g-pssa membranes with 1.5g monomer and over had similar values of methanol permeability, ion conductivity and cell performance.

  • PDF

The Behaviour Characteristics of Strength and Deformation of the Deposited Soft Clay Owing to Contamination (퇴적 연약점토의 오염에 따른 강도 및 변형 거동특성)

  • Chun Byung-Sik;Ha Kwang-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.117-126
    • /
    • 2005
  • The chemical property analysis on the deposited clay using scanning electron microscope and energy dispersive x-ray spectrometer were performed. Also, the triaxial compression tests and consolidation tests using NaCl aqueous solution and leachate as substitute pore (or saturated) water in samples were carried out to find out the behaviour characteristics of strength and deformation of contaminated deposited clay. from the chemical composition analysis results of clay samples, the magnitudes of composition ratio were revealed in the order of O, C, Si, Al, and Fe. Of these, why the ratio of carbon appeared to be large is estimated as due to the increase of the phyto-planktons after the construction of tide embankment. In the triaxial compression test and consolidation test results, the shear strength and compression properties have increased with the increase in concentration of contaminant (NaCl). This phenomenon is considered as to be caused by the changes of soil structure to flocculent structure owing to the decrease in the thickness of diffuse double layer in proportion to increase in the concentration of electrolyte.

Annealing Effect of Phosphorus-Doped ZnO Nanorods Synthesized by Hydrothermal Method (Phosphorus-Doped ZnO 나노로드의 열처리 효과)

  • Hwang, Sung-Hwan;Moon, Kyeong-Ju;Lee, Tae Il;Myoung, Jae Min
    • Korean Journal of Materials Research
    • /
    • v.23 no.5
    • /
    • pp.255-259
    • /
    • 2013
  • An effect of thermal annealing on activating phosphorus (P) atoms in ZnO nanorods (NR) grown using a hydrothermal process was investigated. $NH_4H_2PO_4$ used as a dopant source reacted with $Zn^{2+}$ ions and $Zn_3(PO_4)_2$ sediment was produced in the solution. The fact that most of the input P elements are concentrated in the $Zn_3(PO_4)_2$ sediment was confirmed using an energy dispersive spectrometer (EDS). After the hydrothermal process, ZnO NRs were synthesized and their PL peaks were exhibited at 405 and 500 nm because P atoms diffused to the ZnO crystal from the $Zn_3(PO_4)_2$ particles. The solubility of the $Zn_3(PO_4)_2$ initially formed sediment varied with the concentration of $NH_4OH$. Before annealing, both the structural and the optical properties of the P-doped ZnO NR were changed by the variation of P doping concentration, which affected the ZnO lattice parameters. At low doping concentration of phosphorus in ZnO crystal, it was determined that a phosphorus atom substituted for a Zn site and interacted with two $V_{Zn}$, resulting in a $P_{Zn}-2V_{Zn}$ complex, which is responsible for p-type conduction. After annealing, a shift of the PL peak was found to have occurred due to the unstable P doping state at high concentration of P, whereas at low concentration there was little shift of PL peak due to the stable P doping state.

Surface Characterization According to the Bias Voltage of the TiAgN Coating Film Layer Formed by the AIP Process (AIP법으로 형성된 TiAgN 코팅필름의 바이어스전압에 따른 표면 특성 분석)

  • Baek, Min-Sook;Yoon, Dong-Joo;Kang, Byeong-Mo;Jeong, Woon-Jo;Kim, Byung-Il
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.253-257
    • /
    • 2015
  • The implanting of metal products is performed with numerous surface treatments because of toxicity and adhesion. Recently, the surface modification of metal products has been actively studied by coating the surface of the TiC or TiN film. We prepared a Ti(10%)Ag Target which may be used in dental oral material by, using the AIP(arc ion plating) system TiAgN coating layer that was deposited on Ti g.23. The purpose of this study was to establish the optimal bias voltage conditions of the coated TiAgN layer formed by the AIP process. The TiAgN coatings were prepared with different bias voltage parameters (0V to -500V) to investigate the effect of bias voltage on their mechanical and chemical properties. The SEM(scanning electron microscope), EDS(energy dispersive X-ray spectrometer), XRD(X-ray diffraction), micro-hardness, and potentiodynamic polarization were measured and the surface characteristics of the TiAgN coating layers were evaluated. The TiAgN coating layer had different mechanical characteristics based on the bias voltage, which also showed differences in thickness and composition.

Formation of Bioactive Surface by PEO-treatment after 2nd ATO Technique of Ti-6Al-4V Alloy (Ti-6Al-4V 합금에 2nd ATO 처리 후 플라즈마 전해 산화법에 의한 생체활성표면형성)

  • Lim, Sang-Gyu;Cho, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.74-74
    • /
    • 2018
  • Ti-6Al-4V alloys have been widely used as orthopedic materials because of their excellent corrosion resistance and mechanical properties. However, it does not bind directly to the bone, so it requires a surface modification. This problem can be solved by nanotube and micropore formation. Plasma electrolytic oxidation (PEO) treatment for micropore, which combines high-voltage spark and electrochemical oxidation, is a new way of forming a ceramic coating on light metals such as titanium and its alloys. This method has excellent reproducibility and can easily control the shape and size of the Ti alloy. In this study, formation of bioactive surface by PEO-treatment after $2^{nd}$ ATO technique of Ti-6Al-4V alloy was invesgated by various instrument. Nanotube oxide surface structure was formed on the surface by anodic oxidation treatment in 0.8 wt.% NaF and 1M $H_3PO_4$ electrolytes. After nanotube formation, nanotube layer was removed by ultrasonic cleaning. PEO-treatment was carried out at 280V for 3 minutes in the electrolytic solution containing the bioactive substance (Mg, Zn, Mn, Sr, and Si). The surface of Ti-6Al-4V alloy was observed by field emission scanning electron microscopy (FE-SEM, S-4800 Hitachi, Japan). An energy dispersive X-ray spectrometer (EDS, Inca program, Oxford, UK) was used to analyze the spectra of physiologically active Si, Mn, Mg, Zn, and Sr ions. The PEO film formed on the Ti-6Al-4V alloy surface was characterized using an X-ray diffractometer (TF-XRD, X'pert Philips, Netherlands). It is confirmed that bioactive ions play an essential role in the normal bone growth and metabolism of the human skeletal tissues.

  • PDF

A comparative analysis of basic characteristics of several deproteinized bovine bone substitutes (수종의 탈단백 우골 이식재의 특성 비교 분석)

  • Yeo, Shin-Il;Park, Sung-Hwan;Noh, Woo-Chang;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.2
    • /
    • pp.149-156
    • /
    • 2009
  • Purpose: Deproteinized bovine bone substitutes are commonly used in dental regenerative surgery for treatment of alveolar defects. In this study, three different bovine bone minerals - OCS-B (NIBEC, Seoul, Korea), Bio-Oss (Geistlich - Pharma, Switzerland), Osteograft/N - 300 (OGN, Dentsply Friadent Ceramed. TN, USA) - were investigated to analyze the basic characteristics of commercially available bone substitutes. Methods: Their physicochemical properties were evaluated by scanning electron microscopy, energy dispersive X-ray spectrometer (EDS), surface area analysis, and Kjeldahl protein analysis. Cell proliferation and alkaline phosphatase (ALP) activity of human osteosarcoma cells on different bovine bone minerals were evaluated. Results: Three kinds of bone substitutes displayed different surface properties. Ca/P ratio of OCS - B shown to be lower than other two bovine bone minerals in EDS analysis. Bio-Oss had wider surface area and lower amount of residual protein than OCS - B and OGN. In addition Bio - Oss was proved to have lower cell proliferation and ALP activity due to lots of residual micro particles, compared with OCS - B and OGN. Conclusions: Based on the results of this study, three bovine bone minerals that produced by similar methods appear to have different property and characteristics. It is suggested that detailed studies and quality management is needed in operations for dental use and its biological effects on new bone formation.

Synthesis and Characterization of Waterborne Polyurethanes Based on Isophorone Diisocyanate and Mixed Polyols of Poly(tetramethylene glycol)/Polydimethylsiloxane Diol (이소포론 디이소시아네이트와 폴리(테트라메틸렌 글리콜)/폴리디메틸실록산 디올 혼합 폴리올을 사용한 수분산성 폴리우레탄의 합성과 특성 분석)

  • Lee, Ji Hye;Hong, Seongdon;Kim, Young Ho
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.167-176
    • /
    • 2013
  • Linear and cross-linked waterborne polyurethanes (WPUs) based on isophorone diisocyanate and mixed diols of poly(tetramethylene glycol)/hydroxyethyl-terminated polydimethylsiloxane (PDMS-OH) were synthesized with dimethylol propionic acid as an anionic component, trimethylolpropane as a cross-linking agent, and butanediol as a chain extender and characterized. The hydrophobicity, $T_g$, stress-strain behaviors of the linear or cross-linked siloxane-containing WPU (WPU-Si) films with different PDMS content were analyzed by using water contact shape analyzer, energy dispersive spectrometer, dynamic mechanical analyzer, and universal testing machine. The results reveal that as the PDMS content increased, the hydrophobicity of WPU-Si films increased, $T_g$ moved to higher temperature, the breaking stress increased, and the breaking strain decreased.

Physiochemical analysis, toxicity test and anti-bacterial effect of practically detoxified sulfur (법제유황의 실용적 제조에 따른 물리 화학적 분석 및 독성, 항균 작용에 관한 연구)

  • In, Dong-Chul;Yu, Do-Hyeon;Park, Chul;Park, Jin-Ho
    • Korean Journal of Veterinary Service
    • /
    • v.35 no.3
    • /
    • pp.197-205
    • /
    • 2012
  • Despite of a long history of the sulfur on the disease healing effect, there were limited ways of applying sulfur to animal and human. We have developed the detoxified sulfur (non toxic sulfur) method to make it practical and mass production possible through laboring for many years. This study practiced scanning electron microscope (SEM), Energy dispersive X-ray spectrometer (EDS) and secondary ion mass spectrometry (SIMS) analysis to investigate the physicochemical aspect of detoxified sulfur. We also performed the oral toxicity experiment to mice, and anti-bacterial test of the detoxified sulfur. Based on the SEM, EDS and SIMS results, the united particles in the mass form with the similar component intensity with the raw sulfur were observed, and hydrogen sulfide ion (HS-) component which is regarded as a toxic matter, was decreased after detoxification. Indeed, toxicity test on the mice (10 males, 10 females) showed no clinical, histopathological changes with the 5 times amount (2,500 mg/kg) of the actual doses. However, the male-mice showed decreased in body weight by 23.6%, 24.3% in the 7th, 14th day, respectively, after detoxified sulfur. Moreover, the female-mice administered the detoxified sulfur showed decreased in body weight by 28.7% (P<0.05) than that in the control group on the 14th day. The result of antibacterial test on the detoxified sulfur showed antibacterial effect (27%) to inhibit the growth of Staphylococcus aureus. It is shown that detoxified sulfur can be used as feed additive and has an affect on the farm perfomance.