DOI QR코드

DOI QR Code

Synthesis and Characterization of Waterborne Polyurethanes Based on Isophorone Diisocyanate and Mixed Polyols of Poly(tetramethylene glycol)/Polydimethylsiloxane Diol

이소포론 디이소시아네이트와 폴리(테트라메틸렌 글리콜)/폴리디메틸실록산 디올 혼합 폴리올을 사용한 수분산성 폴리우레탄의 합성과 특성 분석

  • Lee, Ji Hye (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Hong, Seongdon (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Young Ho (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 이지혜 (숭실대학교 유기신소재.파이버공학과) ;
  • 홍성돈 (숭실대학교 유기신소재.파이버공학과) ;
  • 김영호 (숭실대학교 유기신소재.파이버공학과)
  • Received : 2012.10.08
  • Accepted : 2012.11.16
  • Published : 2013.03.25

Abstract

Linear and cross-linked waterborne polyurethanes (WPUs) based on isophorone diisocyanate and mixed diols of poly(tetramethylene glycol)/hydroxyethyl-terminated polydimethylsiloxane (PDMS-OH) were synthesized with dimethylol propionic acid as an anionic component, trimethylolpropane as a cross-linking agent, and butanediol as a chain extender and characterized. The hydrophobicity, $T_g$, stress-strain behaviors of the linear or cross-linked siloxane-containing WPU (WPU-Si) films with different PDMS content were analyzed by using water contact shape analyzer, energy dispersive spectrometer, dynamic mechanical analyzer, and universal testing machine. The results reveal that as the PDMS content increased, the hydrophobicity of WPU-Si films increased, $T_g$ moved to higher temperature, the breaking stress increased, and the breaking strain decreased.

디올 성분으로 폴리(테트라메틸렌 글리콜)(PTMG)과 함께 말단에 히드록시에틸기를 갖는 폴리디메틸실록산(PDMS-OH)을 혼합하여 사용하면서, 이소시아네이트 화합물로 이소포론 디이소시아네이트를, 수분산성을 부여하기 위해 디메틸올 프로피온산을, 가교제로 트리메틸올프로판을, 사슬연장제로 부탄디올을 사용하여 실록산 성분을 포함하는 선형 및 가교형 수분산성 폴리우레탄(WPU-Si)을 합성하였다. PTMG와 PDMS-OH 혼합 비율을 달리하여 합성한 선형 및 가교형 WPU-Si 에멀젼의 안정성을 분석하였고, 이들을 필름으로 제조하여 표면 특성과 $T_g$, 인장 강신도 변화를 분석하였다. PDMS 함량이 많아질수록 시료의 소수성이 증가하고 $T_g$가 높아졌으며, 파단 인장강도는 증가하고 파단 신장률은 감소하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. M. Sultan, K. M. Zia, H. N. Bhatti, T. Jamil, R. Hussain, and M. Zuber, Carbohyd. Polym., 87, 397 (2012). https://doi.org/10.1016/j.carbpol.2011.07.070
  2. H. T. Kim and M. C. Lee, J. Korean Ind. Eng. Chem., 16, 39 (2005).
  3. C. S. Yoo and J. H. Chun, Polym. Sci. Technol., 10, 578 (1999).
  4. A. Saetung, L. Kaenhin, P. Klinpituksa, A. Rungvichaniwat, T. Tulyapitak, S. Munleh, I. Campistron, and J. F. Pilard, J. Appl. Polym. Sci., 124, 2742 (2012). https://doi.org/10.1002/app.35318
  5. F. M. B. Coutinho, M. C. Delpech, and L. S. Alves, J. Appl. Polym. Sci., 80, 566 (2001). https://doi.org/10.1002/1097-4628(20010425)80:4<566::AID-APP1131>3.0.CO;2-H
  6. J. E. Lee and H. J. Kim, Polymer(Korea), 29, 172 (2005).
  7. J. Y. Kwon and H. D. Kim, Macromol. Res., 14, 373 (2006). https://doi.org/10.1007/BF03219097
  8. P. Florian, K. K. Jena, S. Allauddin, R. Narayan, and K. V. S. N. Raju, Ind. Eng. Chem. Res., 49, 4517 (2010). https://doi.org/10.1021/ie900840g
  9. E. Y. Shin and H. J. Kim, Polymer(Korea), 35, 171 (2011).
  10. E. Ayres, R. L. Oréfice, and M. I. Yoshida, Eur. Polym. J., 43, 3510 (2007). https://doi.org/10.1016/j.eurpolymj.2007.05.014
  11. Y. Lu and R. C. Larock, Biomacromolecules, 9, 3332 (2008). https://doi.org/10.1021/bm801030g
  12. M. M. Rahman, H. D. Kim, and W. K. Lee, J. Adhes. Sci. Tech., 23, 177 (2009). https://doi.org/10.1163/156856108X344667
  13. S. K. Lee and B. K. Kim, J. Colloid Interf. Sci., 336, 208 (2009). https://doi.org/10.1016/j.jcis.2009.03.028
  14. H. Chen, Q. Fan, and X. Yu, J. Appl. Polym. Sci., 79, 295 (2001). https://doi.org/10.1002/1097-4628(20010110)79:2<295::AID-APP110>3.0.CO;2-4
  15. T. K. Kim, S. J. Kim, and B. K. Kim, Polymer(Korea), 16, 604 (1992).
  16. J. B. Ahn, H. K. Cho, C. N. Jeong, and S. T. Noh, J. Korean Ind. Eng. Chem., 8, 230 (1997).
  17. M. M. Rahman and W. K. Lee, J. Appl. Polym. Sci., 114, 3767 (2009). https://doi.org/10.1002/app.30848
  18. Y. K. Yang, N. S. Kwak, and T. S. Hwang, Polymer(Korea), 29, 81 (2005).
  19. C. C. M. Ma, F. Y. Wang, Y. C. Du, C. L. Wu, C. L. Chiang, and A. Y. C. Hung, J. Appl. Polym, Sci., 86, 962 (2002). https://doi.org/10.1002/app.11038
  20. Y. Kwon, B. S. Yim, J. M. Kim, and J. Kim, Microelectron. Reliab., 51, 819 (2011). https://doi.org/10.1016/j.microrel.2010.11.001
  21. R. Benrashid and G. L. Nelson, J. Polym. Sci. Part A: Polym. Chem., 32, 1847 (1994).
  22. G. Socrates, Infrared and Raman Characteristic Group Frequencies, John Wiley & Sons, New York, Chap. 10-18 (2001).
  23. S. L. Chai and M. M. Jin, J. Appl. Polym. Sci., 114, 2030 (2009). https://doi.org/10.1002/app.30687
  24. S. H. Son, I. H. Kim, H. J. Lee, and J. H. Kim, Polymer(Korea), 21, 375 (1997).
  25. A. Takahara, J. Tashita, T. Kajiyama, and M. Takayanagi, J. Biomed. Mater. Res., 19, 13 (1985). https://doi.org/10.1002/jbm.820190104
  26. C. H. Cho, H. D. Seo, B. H. Min, H. K. Cho, S. T. Noh, H. G. Choi, Y. H. Cho, and J. H. Kim, J. Korean Ind. Eng. Chem., 13, 825 (2002).
  27. ASTM Standard D, 4187-82, American Society for Testing and Materials, USA, 1985.
  28. R. S. Chen, C. J. Chang, and Y. H. Chang, J. Polym. Sci. Part A: Polym. Chem., 43, 3482 (2005). https://doi.org/10.1002/pola.20805
  29. S. K. Rath, J. G. Chaven, S. Sasane, A. Srivastava, M. Patri, A. B. Samui, B. C. Chakraborty, and S. N. Sawant, Prog. Org. Coat., 65, 366 (2009). https://doi.org/10.1016/j.porgcoat.2009.02.007
  30. S. S. Pathak, A. Sharma, and A. S. Khanna, Prog. Org. Coat., 65, 206 (2009). https://doi.org/10.1016/j.porgcoat.2008.11.005
  31. Q. Fan, J. Fang, Q. Chen, and X. Yu, J. Appl. Polym. Sci., 74, 2552 (1999). https://doi.org/10.1002/(SICI)1097-4628(19991205)74:10<2552::AID-APP25>3.0.CO;2-X
  32. S. K. Liao, S. C. Jang, and M. F. Lin, J. Polym. Res., 12, 103 (2005). https://doi.org/10.1007/s10965-004-2501-7