• Title/Summary/Keyword: Energy consumption-rate

Search Result 1,028, Processing Time 0.024 seconds

Comparison between Heart Rates and Borg's Scale as a Tool to Evaluate Physical Workload (작업 현장에서 육체적 작업 강도를 평가하는 도구로서 Borg's Scale과 심박 수의 비교)

  • Kim, Byoung Hoon;Park, Ji Young;Tak, Sangwoo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.368-374
    • /
    • 2019
  • Objectives: To examine the associations of borg's scale with actual heart rates of workers and energy consumption during their physical work. Methods: A total of 72 workers performing physical activities in postal service, ceramic manufacturing, and metal manufacturing participated in heart rate measurement for 1 work shift using the activity meter(A360) and responded to a borg's scale questionnaire. Results: In consistent with previous findings, we presented high correlation between borg's scale and energy consumption measures among workers performing physical activities(r=0.89) while post-work average heart rate showed nearly no correlation with post-work borg's scale (r=0.09). We proposed a set of adjustments when using borg's scale to estimate physical workload for those workers engaged in physical activities during the majority of their work shift. Conclusions: Our findings suggest that a caution should be paid to when using Borg's scale to estimate heart rates during physical activities as well as energy consumption as the product of heart rate measurements.

Analysis of Saving Rates according to Energy Consumption Factors in Office Building (사무소 건물의 에너지 소비 요소별 절감률 분석)

  • Park, Byung-Il;Yang, In-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.3
    • /
    • pp.115-122
    • /
    • 2016
  • In this study, 21 energy reduction factors were selected as architecture, system & operation, and lighting and equipment parts to analyze reduction method of the load occurring in office buildings. Energy consumption simulation was performed. In the architecture part, saving rate (1.53%) of "occupant density" factor was the most efficient. In the system and operation part, saving rate (1.28%) of "interior VAV and exterior FPU type" factor was the most efficient. In case of lighting and equipment part, saving rate (12.42%) of "schedule" factor was the most efficient. In the three parts, saving rate of the lighting and equipment part was 27.32%. This was caused by the "schedule" factor. Saving rates of the architecture part and the system and operation part were 3.39% and 1.20%, respectively.

A Case Study on Energy Consumption and Calibration of Green Remodeling Buildings (그린리모델링 건물에 대한 에너지소비량 및 보정 사례연구)

  • Kim, Dongi;Lee, Byeongho
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.5
    • /
    • pp.47-58
    • /
    • 2020
  • Ministry of Land, Infrastructure and Transport(MOLIT) has increased reduction rate from 18.1% to 32.7% in Building sector compared to BAU of the national greenhouse gas emission according to the 2030 Greenhouse Gas Reduction Road map Amendment. For this purpose, MOLIT has been activating the green remodeling projects for existing buildings. Considering that 15 year old buildings after completion are 74% (5.25 million buildings) among about 7 million existing building stocks in Korea, reduction of building energy consumption by green remodeling is urgently needed, However, it is a major difficulty of activation for green remodeling projects because there are few case studies on Before and After building energy consumption of actual green remodeling projects. Considering that building energy performance and value increase after green remodeling through previous researches, additional studies of the energy consumption assessment on actual green remodeling projects are essential. Therefore, this study aims to propose results on Before and After building energy consumption of actual green remodeling projects.

Heating and Cooling Energy Conservation Effects by Green Roof Systems in Relation with Building Location, Usage and Number of Floors

  • Son, Hyeong Min;Park, Dong Yoon;Chang, Seong Ju
    • KIEAE Journal
    • /
    • v.14 no.2
    • /
    • pp.11-19
    • /
    • 2014
  • Building energy consumption takes up almost 25% of the total energy consumption. Therefore, diversified ways, such as improving wall and window insulation, have been considered to reduce building energy consumption. Recently, green roof system has been explored as an effective alternative for dealing with reducing heating and cooling energy, thermal island effect and improving water quality. However, recent studies regarding a green roof system have only focused on building energy reduction without considering the applied usage, location, and story of the green roof system. Therefore, this study pays attention to the heating and cooling energy in relation to the applied usage, location, and story of a green roof system for investigating its impact on energy reduction. The result of simulations show that the reduction in heating energy consumption is higher when applied to Cherwon-gun province which has a continental climate condition, compared to the city of Busan that is distinguished by its warm climate. Cooling energy saving turns out to be higher when the green roof system is applied to Busan in comparison with Cherwon. As for the applied usage or function of the building, residential space acquires the highest heating and cooling energy saving effect rather than commerce, educational or office space because of HVAC's running time based on usage. When it comes to the story of the green roof, both heating and cooling energy saving become the highest when the green roof is applied to single-storied buildings. The reason is that single story building is affected by the ground largely. Generally, the variations of heating energy consumption are larger than the cooling energy consumption. The outcome of the simulations, when a green roof system is applied, indicates that the energy consumption reduction rate is dynamically responding to the applied usage, location, and story. Therefore, these factors should be counted closely for maximizing the reduction of energy consumption through green roof systems.

An Analysis of the Prediction Accuracy of HVAC Fan Energy Consumption According to Artificial Neural Network Variables (인공신경망 변수에 따른 HVAC 에너지 소비량 예측 정확도 평가 - 송풍기를 중심으로-)

  • Kim, Jee-Heon;Seong, Nam-Chul;Choi, Won-Chang;Choi, Ki-Bong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.11
    • /
    • pp.73-79
    • /
    • 2018
  • In this study, for the prediction of energy consumption in the ventilator, one of the components of the air conditioning system, the predicted results were analyzed and accurate by the change in the number of neurons and inputs. The input variables of the prediction model for the energy volume of the fan were the supply air flow rate, the exhaust air flow rate, and the output value was the energy consumption of the fan. A predictive model has been developed to study with the Levenbarg-Marquardt algorithm through 8760 sets of one-minute resolution. Comparison of actual energy use and forecast results showed a margin of error of less than 1% in all cases and utilization time of less than 3% with very high predictability. MBE was distributed with a learning period of 1.7% to 2.95% and a service period of 2.26% to 4.48% respectively, and the distribution rate of ${\pm}10%$ indicated by ASHRAE Guidelines 14 was high.8.

Thermal Performance of Solar Cooling & Hot-water System According to Control Condition (태양열 냉방 및 급탕 시스템의 제어 조건에 따른 열성능)

  • Lee, Ho;Joo, Hong-Jin;Kim, Sang-Jin;Kwak, Hee-Yeol
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.214-219
    • /
    • 2008
  • This study is describes thermal performance of solar cooling and hot water for demonstration system with ETSC(Evacuated tubular solar collector) installed at Seo-gu culture center of Kwanju. Control condition for solar cooling and hot water system is changed by connection of auxiliary heater. Demonstration system was connected to central air conditioning system. Demonstration system was operated by two types. First type(A) was operated to cooling and hot water supply in that order. Second type(B) was operated to hot water supply and cooling in that order. As a result. it was indicated that the total solar energy consumption of (A) was 799 MJ and the solar energy consumption rate for the cooling and hot water supply was 70% and 30% respectively. Total solar energy consumption of (b) was 898 MJ and the solar energy consumption rate for the cooling and hot water supply was 31% and 69% respectively.

  • PDF

Evaluation of Energy Consumption through Field Measurement at the Apartment Housing Unit Using Dynamic Flow Rate Balancing (실물실험을 통한 다이나믹 유량밸런싱 적용 공동주택 세대의 에너지소비량 평가)

  • Ryu, Seong-Ryong;Cheong, Chang-Heon;Cho, Hyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.4
    • /
    • pp.15-20
    • /
    • 2016
  • Even though the control device of the heating system works well, insufficient water flow rates can degrade control performance and thermal comfort. The water flow rate should be adjusted appropriately to cope with the heating load of each zone. In order to solve these problems, a new balancing concept 'dynamic balancing' was proposed where a balancing valve opening can be automatically modulated according to the heating condition of the room. This study analyzed the effects of dynamic balancing upon indoor thermal environment and energy consumption in a radiant floor heating system through field measurement. Under part-load conditions, the use of a dynamic balancing is a more effective method to reduce energy consumption and to prevent a cavitation. Dynamic balancing is able to help boost the temperature of a room in the start-up period.

A Elicitation Method of Optimum Slat Angle of Fixed Venetian Blind Considering Energy Performance and Discomfort Glare in Buildings (건물에너지성능 및 불쾌현휘를 고려한 고정형 블라인드의 최적 슬랫각도 도출 방법에 관한 연구)

  • Park, Jang Woo;Yoon, Jong Ho;Oh, Myung-Hwan;Lee, Kwang-Ho
    • KIEAE Journal
    • /
    • v.12 no.6
    • /
    • pp.107-112
    • /
    • 2012
  • The purpose of this study is to determine the optimum slat angle of the venetian blind which was applied at an outer skin of a curtain-wall system. The evaluation of the blind slat angle was performed in terms of the comfortable visual environment and decreased energy consumption. The office building prototype was considered for the analysis and simulation variables include application of blind, blind slat angle and dimming control of lighting. The annual energy consumption and incidence rate of discomfort glare were analyzed using EnergyPlus which is developed by the U. S. Department of Energy for the detailed building energy simulation. As a result, it turns out that when the blind (reflectance: 0.5) was installed, the annual energy consumption was greater than that of the base model. However, when the dimming control was applied, the maximum energy saving of 16.3% could be achieved at a slat angle of $0^{\circ}$. In addition, in case of the base model, the incidence rate of discomfort glare was 84%, while the case of the blind with the slat angle of $0^{\circ}$ showed that the incidence rate of discomfort glare was 42.4%. Consequently, the results showed that the slat angle of $55^{\circ}$ with dimming control was the optimum strategy for the comfortable visual environment and decreased energy consumption.

Analysis of Energy Consumption and Sleeping Protocols in PHY-MAC for UWB Networks

  • Khan, M.A.;Parvez, A.Al;Hoque, M.E.;An, Xizhi;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12B
    • /
    • pp.1028-1036
    • /
    • 2006
  • Energy conservation is an important issue in wireless networks, especially for self-organized, low power, low data-rate impulse-radio ultra-wideband (IR-UWB) networks, where every node is a battery-driven device. To conserve energy, it is necessary to turn node into sleep state when no data exist. This paper addresses the energy consumption analysis of Direct-Sequence (DS) versus Time-Hopping (TH) multiple accesses and two kinds of sleeping protocols (slotted and unslotted) in PHY-MAC for Un networks. We introduce an analytical model for energy consumption or a node in both TH and DS multiple accesses and evaluate the energy consumption comparison between them and also the performance of the proposed sleeping protocols. Simulation results show that the energy consumption per packet of DS case is less than TH case and for slotted sleeping is less than that of unslotted one for bursty load case, but with respect to the load access delay unslotted one consumes less energy, that maximize node lifetime.

Development of Nomographs for the Evaluation of Lighting Energy Performance in a Semi-infinite Office Space (중규모 사무공간에서 조명에너지 성능평가를 위한 노모그래프 개발에 관한 연구)

  • Kim, Han-Seong;Ko, Dong-Hwan;Kim, Kang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.73-80
    • /
    • 2003
  • The purpose of this study was to analyze daylighting performance in a semi-infinite size office space for lighting energy conservation. DOE2.1E was used for simulations for the model space of $12\times12\times2.6m$. Nomographs were developed which could simulate work plane illuminance, glare index, energy consumption rate and energy reduction rate for daylighting design. Major results of simulations are as follows ; 1) When blinds facing south were installed, 43% of workplane illuminance diminished, but the flare index didn't exceed the recommended max-glare value. 2) In a semi-infinite office space facing south. energy consumption rate in the case space of 500 lux workplane illuminance is larger then case space of 300 lux workplane illuminance. Therefore, energy reduction rate is increased when the semi-infinite office faces south and naintains 300 lux workplane illuminance level.