• Title/Summary/Keyword: Energy carrier

Search Result 850, Processing Time 0.026 seconds

Influence of substrate temperatures on optical and electrical properties of ZnO:Al thin films (기판온도가 AZO 박막의 광학적 및 전기적 특성에 미치는 영향)

  • Chung, Yeun-Gun;Joung, Yang-Hee;Kang, Seong-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.1
    • /
    • pp.115-120
    • /
    • 2009
  • The 3wt.% Al-doped zinc oxide (AZO) thin films were fabricated on Coming 1737 substrates at a fixed oxygen pressure of 200 mTorr with various substrate temperatures ($100\;{\sim}\;250^{\circ}C$) by using pulsed laser deposition in order to investigate the microstructure, optical, and electrical properties of AZO thin films. All thin films were shown to be c-axis oriented, exhibiting only a (002) diffraction peak. The AZO thin film, fabricated at 200 mTorr and $250^{\circ}C$, showed the highest (002) orientation and the full width at half maximum (FWHM) of the (002) diffraction peak was $0.44^{\circ}$. The optical transmittance in the visible region was higher than 85 %. The Burstein-Moss effect, which shifts to a high photon energy, was observed. The electrical property indicated that the highest carrier concentration ($3.48{\times}10^{20}cm^{-3}$) and the lowest resistivity ($1.65{\times}10^{-2}{\Omega}cm$) were obtained in the AZO thin film fabricated at 200 mTorr and $250^{\circ}C$.

Effects of Working Pressure on the Electrical and Optical Properties of GZO Thin Films Deposited on PES Substrate (PES 기판에 성장시킨 GZO 박막의 전기적 및 광학적 특성에 미치는 공정압력의 영향)

  • Kang, Seong-Jun;Joung, Yang-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1393-1398
    • /
    • 2015
  • In this study, the electrical and optical properties of GZO (Ga-doped ZnO) thin films prepared on PES substrates by RF magnetron sputtering method with various working pressures (5 to 20 mTorr) were investigated. All GZO thin films exhibited c-axis preferential growth regardless of working pressure, the GZO thin film deposited at 5 mTorr showed the most excellent crystallinity having 0.44˚ of FWHM. In AFM observations, surface roughness exhibited the lowest value of 0.20 nm in a thin film produced by the working pressure 5 mTorr. Figure of merits of GZO thin film deposited at 5 mTorr showed the highest value of 6652, in this case resistivity and average transmittance in the visible light region were 6.93×10-4Ω-cm and 81.4%, respectively. We could observed the Burstein-Moss effect that carrier concentration decrease with the increase of working pressure and thus the energy band gap is narrowed.

Influence of Charge Transport of Pt-CdSe-Pt Nanodumbbells and Pt Nanoparticles/GaN on Catalytic Activity of CO Oxidation

  • Kim, Sun Mi;Lee, Seon Joo;Kim, Seunghyun;Kwon, Sangku;Yee, Kiju;Song, Hyunjoon;Somorjai, Gabor A.;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.164-164
    • /
    • 2013
  • Among multicomponent nanostructures, hybrid nanocatalysts consisting of metal nanoparticle-semiconductor junctions offer an interesting platform to study the role of metal-oxide interfaces and hot electron flows in heterogeneous catalysis. In this study, we report that hot carriers generated upon photon absorption significantly impact the catalytic activity of CO oxidation. We found that Pt-CdSe-Pt nanodumbbells exhibited a higher turnover frequency by a factor of two during irradiation by light with energy higher than the bandgap of CdSe, while the turnover rate on bare Pt nanoparticles didn't depend on light irradiation. We also found that Pt nanoparticles deposited on a GaN substrate under light irradiation exhibit changes in catalytic activity of CO oxidation that depends on the type of doping of the GaN. We suppose that hot electrons are generated upon the absorption of photons by the semiconducting nanorods or substrates, whereafter the hot electrons are injected into the Pt nanoparticles, resulting in the change in catalytic activity. We discuss the possible mechanism for how hot carrier flows generated during light irradiation affect the catalytic activity of CO oxidation.

  • PDF

Effects of B Doping on Structural, Optical, and Electrical Properties of ZnO Nanorods Grown by Hydrothermal Method

  • Kim, Soaram;Nam, Giwoong;Park, Hyunggil;Yoon, Hyunsik;Kim, Byunggu;Kim, Jin Soo;Kim, Jong Su;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.337-337
    • /
    • 2013
  • ZnO seed layers were deposited on a quartz substrate using the sol-gel method, and B-doped ZnO (BZO) nanorods with different B concentrations ranging from 0 to 2.5 at.% were grown on the ZnO seed layers by the hydrothermal method. The structural, optical, electrical propertiesof the ZnO and BZO nanorods were investigated using field-emission scanning electron microscopy, X-ray diffraction (XRD), photoluminescence (PL), ultraviolet-visible spectroscopy, and hall effect. The ZnO and BZO nanorods grew well aligned on the surface of the quartz substrates. From the XRD data, it can be seen that the B doping is responsible for the distortion of the ZnO lattice. The PL spectra show near-band-edge emission and deep-level emission, and they also show that B doping significantly affects the PL properties of ZnO nanorods. The optical band gaps are changed by B doping, and thus the Urbach energy value changed with the optical band gap of the ZnO nanorods. From the hall measurements, it can be observed that the values of electrical resistivity, carrier concentration, and mobility are changed by B doping.

  • PDF

A Study on The Effect of Dampening Conductivity in the Offset Printing Printability (오프셋인쇄 축임물의 전도도가 인쇄적성에 미치는 영향에 관한 연구)

  • Park, Chan-Woo;Lee, Jae-Soo
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.25 no.1
    • /
    • pp.43-52
    • /
    • 2007
  • Offset printing is one of the well known printing technique of lithographic process and consists of image area and 'non-image area on a flat image carrier. The surface tension of dampening water can be controlled by adding IPA after mixing of raw water and etching solution. The etching solution contains a surfactant for reducing surface energy, a clean agent for non-imaging area, wetting agent for protecting non-imaging area from oil components like ink and also an emulsifying agent for controlling emulsification. In this study, the present situation of dampening water maintenance has examined by collecting dampening water using at domestic companies. The pH related to dampening water, conductivity, contact angle, emulsification curve are measured to define the current situation of dampening water control of each companies and to analyze the relationship among measured properties. In the study most of companies among 16 printing companies tested controlling dampening water through pH value. However, the quality of printing has varied depending upon conductivity, contact angle, IPA content, and emulsification value. The control of dampening water should be carry at the state of the standard when adding proper ratio of etching solution. It would be more effective when pH or conductivity control carries out in parallel with controlling dampening water. Therefore the concept that pH5.5 is correct is based concept. Based on these initial tests it is defined that the standardization of dampening water control is required.

  • PDF

Application Status and Prospect of Magnetic Separation Technology for Wastewater Treatment (폐수처리 분야에서 자기 분리기술의 응용 현황 및 전망)

  • Chu, Shaoxiong;Lim, Bongsu;Choi, Chansoo
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.2
    • /
    • pp.153-163
    • /
    • 2020
  • Magnetic separation technology is an efficient and environmentally friendly technology. Compared with the traditional wastewater treatment technology, the magnetic separation technology has its unique advantages and characteristics, and has been widely applied in the field of wastewater treatment. In particular, the emergence of superconducting magnetic separation technology makes possible for high application potential and value. In this paper, which through consulting with the literatures of Korea, Chinese, United States and other countries, the magnetic separation technology applied to wastewater treatment was mainly divided into direct application of magnetic field, flocculation, adsorption, catalysis and separation coupling technology. Advantages and limitations of the magnetic separation technology in sewage treatment and its future development were also studied. Currently, magnetic separation technology needs to be studied for additional improvement in processing mechanism, design optimization of magnetic carrier and magnetic separator, and overcoming engineering application lag. The selection, optimization and manufacturing of cheap magnetic beads, highly adsorbed and easily desorbed magnetic beads, specific magnetic beads, nanocomposite magnetic beads and the research of magnetic beads recovery technology will be hot application of the magnetic separation technology based on the magnetic carriers in wastewater treatment. In order to further reduce the investment and operation costs and to promote the application of engineering, it is necessary to strengthen the research and development of high field strength using inexpensive and energy-saving magnet materials, specifically through design and development of new high efficiency magnetic separators/filters, magnetic separators and superconducting magnetic separators.

Growth and Structural Characterizations of CdSe/GaAs Eppilayers by Electron Beam Evaporation Method

  • Yang, Dong-Ik;Sung-Mun ppark
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1995.02a
    • /
    • pp.36-36
    • /
    • 1995
  • The cubic (zinc blende) CdSe eppilayers were grown on GaAs(100) substrates by electron beam (e-beam) evapporation technique. X-ray scans with copper $K\alpha$ radiation indicate that the CdSe eppilayers are zinc blende. The lattice pparameter obtained from the (400) reflection is 6.077$\AA$, which is in excellent agreement with the value repported in the literature for zinc blende CdSe. The orientation of as-grown CdSe eppilayer is determined by electron channeling ppatterns(ECpp). The crystallinity of heteroeppitaxial CdSe layers were investigated based on the double crystal x-ray rocking curve(DCRC). The deppendence of the rocking curve width on layer thickness was studied. The FWHM(full width at half maximum) of CdSe eppilayers grown on GaAs(100) substrates is decreasing with increasing eppilayer thickness. The carrier concentration and mobility of the as-grown eppilayers deduced Hall data by van der ppauw method, are about 7$\times$1017 cm-3 and 2$\times$102 $\textrm{cm}^2$ / sec at room tempperature, resppectively. The energy gapp was determinded from the pphotocurrent sppectrum. In pphotocurrent sppectrum of a 1-${\mu}{\textrm}{m}$-thick CdSe eppilayer at 30K, the ppeak at 1.746 eV is due to the free exciton of cubic CdSe. In summary, We have shown that eppilayers of zinc blende CdSe can be grown on GaAs(100) substrates by e-beam, desppite the large mismatch between eppilayer and substrate, as well as the natural ppreference for CdSe to form in the wurtzite structure.

  • PDF

Performance Analysis of Assisted-Galileo Signal Acquisition Under Weak Signal Environment (약 신호 환경에서의 Assisted-Galileo 신호 획득 성능 분석)

  • Lim, Jeong-Min;Park, Ji-Won;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.646-652
    • /
    • 2013
  • EU's Galileo project is a market-based GNSS (Global Navigation Satellite System) that is under development. It is expected that Galileo will provide the positioning services based on new technologies in 2020s. Because Galileo E1 signal for OS (Open Service) shares the same center frequency with GPS L1 C/A signal, CBOC (Composite Binary Offset Carrier) modulation scheme is used in the E1 signal to guarantee interoperability between two systems. With E1 signal consisting of a data channel and a pilot channel at the same frequency band, there exist several options in designing signal acquisition for Assisted-Galileo receivers. Furthermore, compared to SNR worksheet of Assisted-GPS, some factors should be examined in Assisted-Galileo due to different correlation profile and code length of E1 signal. This paper presents SNR worksheets of Galileo E1 signals in E1-B and E1-C channel. Three implementation losses that are quite different from GPS are mainly analyzed in establishing SNR worksheets. In the worksheet, hybrid long integration of 1.5s is considered to acquire weak signal less than -150dBm. Simulation results show that the final SNR of E1-B signal with -150dBm is 19.4dB and that of E1-C signal is 25.2dB. Comparison of relative computation shows that E1-B channel is more profitable to acquire the strongest signal in weak signal environment. With information from the first satellite signal acquisition, fast acquisition of the weak signal around -155dBm can be performed with E1-C signal in the subsequent satellites.

Coenzyme Q10: a progress towards the treatment of neurodegenerative disease

  • Kumar, Peeyush;Kumar, Pramod;Ram, Alpana;Kuma, Mithilesh;Kumar, Rajeev
    • Advances in Traditional Medicine
    • /
    • v.10 no.4
    • /
    • pp.239-253
    • /
    • 2010
  • Coenzyme $Q_{10}$ ($CoQ_{10}$, or ubiquinone) is an electron carrier of the mitochondrial respiratory chain (electron transport chain) with antioxidant properties. In view of the involvement of $CoQ_{10}$ in oxidative phosphorylation and cellular antioxidant protection a deficiency in this quinone would be expected to contribute to disease pathophysiology by causing a failure in energy metabolism and antioxidant status. Indeed, a deficit in $CoQ_{10}$ status has been determined in a number of neuromuscular and neurodegenerative disorders. Primary disorders of $CoQ_{10}$ biosynthesis are potentially treatable conditions and therefore a high degree of clinical awareness about this condition is essential. A secondary loss of $CoQ_{10}$ status following HMG-CoA reductase inhibitor (statins) treatment has been implicated in the pathophysiology of the myotoxicity associated with this pharmacotherapy. $CoQ_{10}$ and its analogue, idebenone, have been widely used in the treatment of neurodegenerative and neuromuscular disorders. These compounds could potentially play a role in the treatment of mitochondrial disorders, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, Friedreich's ataxia, and other conditions which have been linked to mitochondrial dysfunction. This article reviews the physiological roles of $CoQ_{10}$, as well as the rationale and the role in clinical practice of $CoQ_{10}$ supplementation in different neurological diseases, from primary $CoQ_{10}$ deficiency to neurodegenerative disorders. These will help in future for treatment of patients suffering from neurodegenerative disease.

Nonstoichiometric Effects in the Leakage Current and Electrical Properties of Bismuth Ferrite Ceramics

  • Woo, Jeong Wook;Baek, SeungBong;Song, Tae Kwon;Lee, Myang Hwan;Rahman, Jamil Ur;Kim, Won-Jeong;Sung, Yeon Soo;Kim, Myong-Ho;Lee, Soonil
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.323-330
    • /
    • 2017
  • To understand the defect chemistry of multiferroic $BiFeO_3-based$ systems, we synthesized nonstoichiometric $Bi_{1+x}FeO_{3{\pm}{\delta}}$ ceramics by conventional solid-state reaction method and studied their structural, dielectric and high-temperature charge transport properties. Incorporation of an excess amount of $Bi_2O_3$ lowered the Bi deficiency in $BiFeO_3$. Polarization versus electric field (P-E) hysteresis loop and dielectric properties were found to be improved by the $Bi_2O_3$ addition. To better understand the defect effects on the multiferroic properties, the high temperature equilibrium electrical conductivity was measured under various oxygen partial pressures ($pO_2{^{\prime}}s$). The charge transport behavior was also examined through thermopower measurement. It was found that the oxygen vacancies contribute to high ionic conduction, showing $pO_2$ independency, and the electronic carrier is electron (n-type) in air and Ar gas atmospheres.