• Title/Summary/Keyword: Energy carrier

Search Result 860, Processing Time 0.032 seconds

Study on the Preparations of New $^{166}Ho$-Chitosan Complex and Its Macroaggregates for a Potential Use of Internal Radiotherapy (새로운 내부 방사선 치료용 $^{166}Ho$-Chitosan 착물 및 그 응집입자의 제조에 관한 연구)

  • Park, K.B.;Kim, Y.M.;Shin, B.C.;Kim, J.R.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.3
    • /
    • pp.351-360
    • /
    • 1996
  • Chitosan is a polysaccharide of natural orgin obtained by full or partial deacetylation of chitin, a very abudant natural polymer, which has the properties of biocompatibilities, bioaffinities, and biodegradabilities. The free amino group of chitosan should be participated in forming chelate with holmium (${\beta}$-emitter). $^{166}Ho(NO_3)_3\;5H_2O$ of high radionuclidic purity of upto 99.9% was made by neutron irradiation of naturally occuring $^{166}Ho(NO_3)_3\;5H_2O$, and then reacted with the prepared chitosan solution. The effect of pH, reaction time, the concentration and viscosity of chitosan and the amount of $^{166}Ho$ on forming $^{166}Ho$-chitosan complex ($^{166}Ho$-CHICO) were investigated. $^{166}Ho$-chitosan macroaggregate($^{166}Ho$-CHIMA) was made from $^{166}Ho$-CHICO. Their physical properties such as radionuclidic purity, particle size distribution, stability in vitro and vivo were examined. Their high in vitro and vivo stability makes them attractive agents for internal radiotherapy by local administeration.

  • PDF

Microbial hydrogen production: Dark Anaerobic Fermentation and Photo-biological Process (미생물에 의한 수소생산: Dark Anaerobic Fermentation and Photo-biological Process)

  • Kim, Mi-Sun;Baek, Jin-Sook
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.393-400
    • /
    • 2005
  • Hydrogen($H_2$) as a clean, and renewable energy carrier will be served an important role in the future energy economy. Several biological $H_2$ production processes are known and currently under development, ranging from direct bio-photolysis of water by green algae, indirect bio-photolysis by cyanobacteria including the separated two stage photolysis using the combination of green algae and photosynthetic microorganisms or green algae alone, dark anaerobic fermentation by fermentative bacteria, photo-fermentation by purple bacteria, and water gas shift reaction by photosynthetic or fermentative bacteria. In this paper, biological $H_2$ production processes, that are being explored in fundamental and applied research, are reviewed.

Photocurrent Study on the Splitting of the Valence Band and Growth of BaIn2Se4 epilayers by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 BaIn2Se4 에피레어 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Jeong, Junwoo;Lee, Kijeong;Jeong, Kyunga;Hong, Kwangjoon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.134-141
    • /
    • 2014
  • A stoichiometric mixture of evaporating materials for $BaIn_2Se_4$ epilayers was prepared from horizontal electric furnace. To obtain the single crystal thin films, $BaIn_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the epilayers was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $BaIn_2Se_4$ epilayers measured from Hall effect by van der Pauw method are $8.94{\times}10^{17}cm^{-3}$ and 343 $cm^2/vs$ at 293 K, respectively. The temperature dependence of the energy band gap of the $BaIn_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)$=2.6261 eV-$(4.9825{\times}10^{-3}eV/K)T^2/(T+558 K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $BaIn_2Se_4$ have been estimated to be 116 meV and 175.9 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $BaIn_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1-$, $B_1$-exciton for n = 1 and $C_{21}$-exciton peaks for n=21.

Growth of $CuInSe_2$ single crystal thin film for solar cell development and its solar cell application (태양 전지용 $CuInSe_2$ 단결정 박막 성장과 태양 전지로의 응용)

  • Lee, Sang-Youl;Hong, Kwang-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.1-11
    • /
    • 2005
  • The stoichiometric mixture of evaporating materials for the $CuInSe_2$ single crystal thin film was prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuInSe_2$, it was found tetragonal structure whose lattice constant $a_0$ and $c_0$ were $5.783\;{\AA}$ and $11.621\;{\AA}$, respectively. To obtain the $CuInSe_2$ single crystal thin film, $CuInSe_2$ mixed crystal was deposited on throughly etched GaAs(100) by the HWE(Hot Wall Epitaxy) system. The source and substrate temperature were $620^{\circ}C$ and $410^{\circ}C$ respectively. The crystalline structure of $CuInSe_2$ single crystal thin film was investigated by the double crystal X-ray diffraction(DCXD). Hall effect on this sample was measured by the method of Van der Pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by impurity scattering in the temperature range 30 K to 100 K and by lattice scattering in the temperature range 100 K to 293 K. The temperature dependence of the energy band gap of the $CuInSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.1851\;eV-(8.99{\times}10^{-4}\;eV/K)T^2/(T+153\;K)$. The open-circuit voltage, short current density, fill factor, and conversion efficiency of $n-CdS/p-CuGaSe_2$ heterojunction solar cells under $80\;mW/cm^2$ illumination were found to be 0.51V, $29.3\;mA/cm^2$, 0.76 and 14.3 %, respectively.

Growth of CaAl2Se4: Co Single Crystal Thin Film for Solar Cell Development and Its Solar Cell Application (태양 전지용 CaAl2Se4: Co 단결정 박막 성장과 태양 전지로의 응용)

  • Bang, Jin-Ju;Hong, Kwang-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.1
    • /
    • pp.25-36
    • /
    • 2018
  • The stoichiometric mixture of evaporating materials for the $CaAl_2Se_4$: Co single crystal thin film was prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CaAl_2Se_4$, it was found orthorhomic structure whose lattice constant $a_0$, $b_0$ and $c_0$ were 6.4818, $11.1310{\AA}$ and $11.2443{\AA}$, respectively. To obtain the $CaAl_2Se_4$: Co single crystal thin film, $CaAl_2Se_4$: Co mixed crystal was deposited on throughly etched Si (100) by the HWE (Hot Wall Epitaxy) system. The source and substrate temperature were $600^{\circ}C$ and $440^{\circ}C$ respectively. The crystalline structure of $CaAl_2Se_4$: Co single crystal thin film was investigated by the double crystal X-ray diffraction (DCXD). Hall effect on this sample was measured by the method of Van der Pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by impurity scattering in the temperature range 30 K to 100 K and by lattice scattering in the temperature range 100 K to 293 K. The temperature dependence of the energy band gap of the $CaAl_2Se_4$: Co obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=3.8239eV-(4.9823{\times}10^{-3}eV/K)T_2/(T+559K)$. The open-circuit voltage, short current density, fill factor, and conversion efficiency of $p-Si/p-CaAl_2Se_4$: Co heterojunction solar cells under $80mW/cm^2$ illumination were found to be 0.42 V, $25.3mA/cm^2$, 0.75 and 9.96%, respectively.

Hydrodynamic Properties of Interconnected Fluidized Bed Chemical-Looping Combustors (상호 연결된 유동층 매체 순환식 연소로의 수력학적 특성)

  • Son, Sung Real;Go, Kang Seok;Kim, Sang Done
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.185-192
    • /
    • 2010
  • The chemical-looping combustion(CLC) has advantages of no energy loss for separation of $CO_2$ without $NO_x$ formation. This CLC system consists of oxidation and reduction reactors where metal oxides particles are circulating through these two reactors. In the present study, the reaction kinetic equations of iron oxide oxygen carriers supported on bentonite have been determined by the shrinking core model. Based on the reactivity data, design values of solid circulation rate and solids inventory were determined for the rector. Two types of interconnected fluidized bed systems were designed for CLC application, one system consists of a riser and a bubbling fluidized bed, and the other one has a riser and two bubbling fluidized beds. Solid circulation rates were varied to about $30kg/m^2s$ by aeration into a loop-seal. Solid circulation rate increases with increasing aeration velocity and it increases further with an auxiliary gas flow into the loop-seal. As solid circulation rate is increased, solid hold up in the riser increases. A typical gas leakage from the riser to the fluidized bed is found to be less than 1%.

Growth and Optical Conductivity Properties for BaAl2Se4 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 BaAl2Se4 단결정 박막 성장과 광전도 특성)

  • Jeong, Junwoo;Lee, Kijung;Hong, Kwangjoon
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.404-411
    • /
    • 2015
  • A stoichiometric mixture of evaporating materials for $BaAl_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $BaAl_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $BaAl_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $8.29{\times}10^{-16}cm^{-3}$ and $278cm^2/vs$ at 293 K, respectively. The temperature dependence of the energy band gap of the $BaAl_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=3.4205eV-(4.3112{\times}10^{-4}eV/K)T^2/(T+232 K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $BaAl_2Se_4$ have been estimated to be 249.4 meV and 263.4 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $BaAl_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-exciton for n =1 and $C_{31}$-exciton peaks for n=31.

Research Trends of Foreign Countries on Geological Evaluation of Abiotic Hydrogen Productivity: A Review (비생물기원 수소 생산성의 지질학적 평가 관련 해외 연구 동향: 리뷰 논문)

  • Jeong, Seongwoo;Kim, Taeyong;Ko, Kyoungtae;Yang, Minjune
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.627-642
    • /
    • 2022
  • The world's long reliance on fossil fuels (e.g., oil, coal, and natural gas) is severely changing its environment and climate. Energy research has focused on developing hydrogen as the most promising energy carrier and a key technology for sustainable energy development. Hydrogen can be classified as gray, blue, green, and otherwise according to the raw materials and methods used for production and processing. For the development of hydrogen energy, geologists are attempting to identify the mechanism of abiotic hydrogen generation by serpentinization or hydrothermal alteration. Teams in the United States, France, and Australia have researched laboratory-scale hydrogen production through water-rock interactions under various conditions, whereas there has been almost no research on abiotic hydrogen in South Korea. This paper reviews the current state of international research on hydrothermal alteration and offers suggestions for future investigations of abiotic hydrogen production in South Korea.

Growth and Photocurrent Properties of $CuGaSe_2$ Single Crystal ($CuGaSe_2$ 단결정 박막 성장과 광전류 특성)

  • K.J. Hong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.81-81
    • /
    • 2003
  • The stochiometric mixture of evaporating materials for the CuGaSe$_2$ single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal CuGaSe$_2$, it was found tetragonal structure whose lattice constant no and co were 5.615$\AA$ and 11.025$\AA$, respectively. To obtains the single crystal thin films, CuGaSe$_2$ mixed crystal was deposited on throughly etched GaAs(100) by the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were 61$0^{\circ}C$ and 45$0^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about 0.5${\mu}{\textrm}{m}$/h. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction(DCXD). Hall effect on this sample was measured by the method of van der pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by pizoelectric scattering in the temperature range 30K to 150K and by polar optical scattering in the temperature range 150K to 293K. The optical energy gaps were found to be 1.68eV for CuGaSe$_2$ single crystal thin films at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation then the constants in the Varshni equation are given by a=9.615$\times$ 10$^{-4}$ eV/K, and $\beta$=335K. From the photocurrent spectra by illumination of polarized light of the CuGaSe$_2$ single crystal thin films. We have found that values of spin orbit coupling ΔSo and crystal field splitting ΔCr was 0.0900eV and 0.2498eV, respectively. From the PL spectra at 20K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0626eV and the dissipation energy of the acceptor-bound exciton and donor-bound exciton to be 0.0352eV, 0.0932eV, respectively.

  • PDF

Study of the Efficiency Droop Phenomena in GaN based LEDs with Different Substrate

  • Yoo, Yang-Seok;Li, Song-Mei;Kim, Je-Hyung;Gong, Su-Hyun;Na, Jong-Ho;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.172-173
    • /
    • 2012
  • Currently GaN based LED is known to show high internal or external efficiency at low current range. However, this LED operation occurs at high current range and in this range, a significant performance degradation known as 'efficiency droop' occurs. Auger process, carrier leakage process, field effect due to lattice mismatch and thermal effects have been discussed as the causes of loss of efficiency, and these phenomena are major hindrance in LED performance. In order to investigate the main effects of efficiency loss and overcome such effects, it is essential to obtain relative proportion of measurements of internal quantum efficiency (IQE) and various radiative and nonradiative recombination processes. Also, it is very important to obtain radiative and non-radiative recombination times in LEDs. In this research, we measured the IQE of InGaN/GaN multiple quantum wells (MQWs) LEDs with PSS and Planar substrate using modified ABC equation, and investigated the physical mechanism behind by analyzing the emission energy, full-width half maximum (FWHM) of the emission spectra, and carrier recombination dynamic by time-resolved electroluminescence (TREL) measurement using pulse current generator. The LED layer structures were grown on a c-plane sapphire substrate and the active region consists of five 30 ${\AA}$ thick In0.15Ga0.85N QWs. The dimension of the fabricated LED chip was $800um{\times}300um$. Fig. 1. is shown external quantum efficiency (EQE) of both samples. Peak efficiency of LED with PSS is 92% and peak efficiency of LED with planar substrate is 82%. We also confirm that droop of PSS sample is slightly larger than planar substrate sample. Fig. 2 is shown that analysis of relation between IQE and decay time with increasing current using TREL method.

  • PDF