• Title/Summary/Keyword: Energy barrier model

Search Result 130, Processing Time 0.032 seconds

A Prediction of Saturated Hydraulic Conductivity for Compacted Bentonite Buffer in a High-level Radioactive Waste Disposal System (고준위방사성폐기물 처분시스템의 압축 벤토나이트 완충재의 포화 수리전도도 추정)

  • Park, Seunghun;Yoon, Seok;Kwon, Sangki;Kim, Geon-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.133-141
    • /
    • 2020
  • A geological repository comprises a natural barrier and an engineered barrier system. Its design components consist of canisters, buffers, backfill, and near-field rock. Among the engineered barrier system components, bentonite buffers minimize the groundwater flow from near-field rock and prevent the release of nuclide. Investigation of the hydraulic conductivity of the buffer to groundwater flow is an important factor in the performance evaluation of the stability and integrity of the engineered barrier of the repository. In this study, saturated hydraulic conductivity tests were performed using Gyeongju bentonite at various dry densities and temperatures, and a hydraulic conductivity prediction model was developed through multiple regression analysis using the 120 result sets of hydraulic conductivity. The test results showed that the hydraulic conductivity tends to decrease as the dry density increases. In addition, the hydraulic conductivity increased with increasing temperature. The multiple regression analysis results showed that the coefficient of determination (R2) of the hydraulic conductivity prediction equation was as high as 0.93. The hydraulic conductivity prediction equation presented in this study could be used for the design of engineered barrier systems.

Evaluation of Thermal Environment through Large-scale Model Experiment on Air-barrier Type Perimeter-less System (실대실험에 의한 에어베리어형 페리미터레스 공조시스템의 실내 열환경 평가)

  • 김용경;이정재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.970-978
    • /
    • 2003
  • This paper aims at suggesting design guidelines for a perimeter-less HVAC system that contributes energy savings. Perimeter-less HVAC system is one that relieves difficulties such as handling mixing loss, uneven radiative environment, and maintenance and repair. It prevents heat load gained through window and outdoor wall without modifying a previously equipped building skin system. In this paper, we conducted a large-scale model experiment to see how the push-pull air flow would handle indoor heat to obtain an optimized perimeter-less design, and then we plan to perform several kinds of CFD (computational fluid dynamics) cases through numerical simulation

An Analysis of the Water Saturation Processes in the Engineered Barrier of a High Level Radioactive Waste Disposal System (고준위폐기물처분시스템 공학적 방벽에서의 지하수 포화공정 해석)

  • Park, Jeong-Hwa;Lee, Jae-Owan;Kwon, Sang-Ki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.1
    • /
    • pp.23-32
    • /
    • 2011
  • An engineering scale test, which is called KENTEX, was carried out to understand and to analyze the coupled thermal, hydrological and mechanical phenomena in the engineered barrier system(EBS) of Korean reference disposal system. Using the experimental data obtained from KENTEX, the water saturation processes in bentonite could be analyzed. From the comparison between the model calculation using ABAQUS and the experimental results, the difference of the water content between them in the unsaturating part was large because the drying phenomena due to moisture redistribution by the temperature gradient could not be included in the model. In the saturating part, the difference of the water content between them was decreased gradually and showed to be small in the full saturation. And the time of about 95% saturation could be estimated about 500 days from the model calculation and experimental results. Also it could be known that the moisture redistribution in the unsaturated part could not be affected on the saturation time of bentonite in the repository. Therefore, it is considered that this model could be used to quantitatively predict the water saturation time in bentonite as EBS for the disposal system.

High-Temperature Deformation Behavior of a STS 321 Stainless Steel (STS 321 스테인리스강의 고온 변형 거동)

  • Lee, Keumoh;Ryu, Chulsung;Heo, Seongchan;Choi, Hwanseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.5
    • /
    • pp.51-59
    • /
    • 2016
  • STS 321 stainless steel is generally used for a material of high-temperature and high-pressure system including liquid rocket engine. The constitutive equation for flow stress has been suggested using thermal stress component and athermal stress component based on Kocks dislocation barrier model to predict 321 stainless steel's deformation behavior at elevated temperature. The suggested model predicted well the material deformation behaviors of 321 stainless steel at the wide temperature range from room temperature to $500^{\circ}C$.

Wave Responses of Buoyant Flap-typed Storm Surge Barriers - Numerical Simulation (부유 플랩형 고조방파제의 파랑응답 - 수치모의)

  • Jeong, Shin-Taek;Ko, Dong-Hui;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.196-208
    • /
    • 2009
  • In this paper, wave responses of buoyant flap-typed storm surge barriers was studied numerically. Wave motions were modeled by using a linear potential wave theory, and behaviors of structures were represented as a Newton's 2nd law of motion. The near field region of the fluid was discretized as conventional quadratic iso-parametric elements, while the far field was modeled as infinite elements. Comparisons with the results from hydraulic model tests show that the present model gives good results. By using the model, the applicability of a buoyant flap-typed storm surge barrier in Masan bay was investigated considering field environmental conditions.

Thermal conductivity prediction model for compacted bentonites considering temperature variations

  • Yoon, Seok;Kim, Min-Jun;Park, Seunghun;Kim, Geon-Young
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3359-3366
    • /
    • 2021
  • An engineered barrier system (EBS) for the deep geological disposal of high-level radioactive waste (HLW) is composed of a disposal canister, buffer material, gap-filling material, and backfill material. As the buffer fills the empty space between the disposal canisters and the near-field rock mass, heat energy from the canisters is released to the surrounding buffer material. It is vital that this heat energy is rapidly dissipated to the near-field rock mass, and thus the thermal conductivity of the buffer is a key parameter to consider when evaluating the safety of the overall disposal system. Therefore, to take into consideration the sizeable amount of heat being released from such canisters, this study investigated the thermal conductivity of Korean compacted bentonites and its variation within a temperature range of 25 ℃ to 80-90 ℃. As a result, thermal conductivity increased by 5-20% as the temperature increased. Furthermore, temperature had a greater effect under higher degrees of saturation and a lower impact under higher dry densities. This study also conducted a regression analysis with 147 sets of data to estimate the thermal conductivity of the compacted bentonite considering the initial dry density, water content, and variations in temperature. Furthermore, the Kriging method was adopted to establish an uncertainty metamodel of thermal conductivity to verify the regression model. The R2 value of the regression model was 0.925, and the regression model and metamodel showed similar results.

Construction of Hydrogeological Model for KURT Site Based on Geological Model (KURT 연구지역에서 지질모델을 이용한 수리지질모델의 구축)

  • Park, Kyung-Woo;Ko, Nak-Yeol;Ji, Sung-Hoon
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.121-130
    • /
    • 2018
  • The KURT (KAERI Underground Research Tunnel) is a research tunnel which is located in KAERI (Korea Atomic Energy Research Institute) site. At KURT, researches on engineering and natural barrier system, which are the most important components for geological disposal system for high level radioactive waste, have been conducted. In this study, we synthesized the site characteristics obtained by various types of site investigation to introduce the geological model for KURT site, and induced the 3-D hydrogeological model for KURT site from the geological model. From the geological investigation at the surface and boreholes, four geological elements such as subsurface weathered zone, upper fractured rock, lower fractured rock and fracture zones were determined for the geological model. In addition, the geometries of these geological elements were also analyzed for the geological model to be three-dimensional. The results from 3-D geological model were used to construct the hydro-geological model for KURT site, which is one of the input data for groundwater flow modeling and safety assessment.

Thickness dependency of MAHONOS ($Metal/Al_2O_3/HfO_2/SiO_2/Si_3N_4/SiO_2/Si$) charge trap flash memory

  • O, Se-Man;Yu, Hui-Uk;Kim, Min-Su;Lee, Yeong-Hui;Jeong, Hong-Bae;Jo, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.34-34
    • /
    • 2009
  • The electrical characteristics of tunnel barrier engineered charge trap flash (TBE-CTF) memory with $SiO_2/Si_3N_4/SiO_2/Si$ engineered tunnel barrier, $HfO_2$ charge trap layer and $Al_2O_3$ blocking oxide layer (MAHONOS) were investigated. The energy bad diagram was designed by using the quantum-mechanical tunnel model (QM) and then the CTF memory devices were fabricated. As a result, the best thickness combination of MAHONOS is confirmed. Moreover, not enhanced P/E speed (Program: about $10^6$ times) (Erase: about $10^4$ times) but also enhanced retention and endurance characteristics are represented.

  • PDF

Green-Function Calculations of Coherent Electron Transport in a Gated Si Nanowire

  • Ko, Young-Jo;Shin, Min-Cheol;Ha, Jeong-Sook;Park, Kyoung-Wan
    • ETRI Journal
    • /
    • v.22 no.3
    • /
    • pp.19-26
    • /
    • 2000
  • We describe a detailed numerical scheme to calculate electron transport in quantum wires using the Green function formalism combined with tight-binding orbital basis. As an example of the application, we study the electron transport in a Si nanowire containing a finite potential barrier. The effects of nonzero bias, temperature, and disorder on the barrier-induced oscillatory conductance are investigated within the context of coherent transport model. The oscillatory behavior of the conductance as a function of the Fermi energy is found to be highly sensitive to sample disorder and limited to a very low temperature and a small bias range.

  • PDF

Electrical Properties of Tungsten Oxide Interfacial Layer for Silicon Solar Cells

  • Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.196.2-196.2
    • /
    • 2015
  • There are various issues fabricating the successful and efficient solar cell structures. One of the most important issues is band alignment technique. The solar cells make the carrier in their active region over the p-n junction. Then, electrons and holes diffuse by minority carrier diffusion length. After they reach the edge of solar cells, there exist large energy barrier unless the good electrode are chosen. Many various conductor with different work functions can be selected to solve this energy barrier problem to efficiently extract carriers. Tungsten oxide has large band gap known as approximately 3.4 eV, and usually this material shows n-type property with reported work function of 6.65 eV. They are extremely high work function and trap level by oxygen vacancy cause them to become the hole extraction layer for optical devices like solar cells. In this study, we deposited tungsten oxide thin films by sputtering technique with various sputtering conditions. Their electrical contact properties were characterized with transmission line model pattern. The structure of tungsten oxide thin films were measured by x-ray diffraction. With x-ray photoelectron spectroscopy, the content of oxygen was investigated, and their defect states were examined by spectroscopic ellipsometry, UV-Vis spectrophotometer, and photoluminescence measurements.

  • PDF