Green-Function Calculations of Coherent Electron Transport in a Gated Si Nanowire

  • Received : 2000.05.17
  • Published : 2000.09.30

Abstract

We describe a detailed numerical scheme to calculate electron transport in quantum wires using the Green function formalism combined with tight-binding orbital basis. As an example of the application, we study the electron transport in a Si nanowire containing a finite potential barrier. The effects of nonzero bias, temperature, and disorder on the barrier-induced oscillatory conductance are investigated within the context of coherent transport model. The oscillatory behavior of the conductance as a function of the Fermi energy is found to be highly sensitive to sample disorder and limited to a very low temperature and a small bias range.

Keywords

References

  1. Appl. Phys. Lett. v.64 no.11 Self-limiting Oxidation for Fabricating Sub-5 nm Silicon Nanowires Liu, H.I.;Biegelsen, D.K.;Ponce, F.A.;Johnson, N.M.;Pease, R.F.W.
  2. Appl. Phys. Lett. v.65 no.22 Fabrication of a Silicon Quantum Wire Surrounded by Silicon Dioxide and its Transport Properties Nakajima, Y.;Takahashi, Y.;Horiguchi, S.;Iwadate, K.;Namatsu, H.;Kurihara, K.;Tabe, M.
  3. Appl. Phys. Lett. v.70 no.5 Fabrication of 2-nm-wide Silicon Quantum Wires through a Combination of a Partially-Shifted Resist Pattern and Orientation-Dependent Etching Namatsu, H.;Kurihara, K.;Nagase, M.;Makino, T.
  4. J. Appl. Phys. v.86 no.12 Effect of Wire Length on Coulomb Blockade in Utrathin Wires of Recrystallized Hydrogenated Amorphous Silicon Ng, V.;Ahmed, H.
  5. Electronic Transport in Mesoscopic Systems Datta, S.
  6. Phys. Rev. B v.58 no.8 Conductance of Carbon Nanotubes with Disorder: a Numerical Study Anantram, M.P.;Govindan, T.R.
  7. Phys. Rev. Lett. v.80 no.5 Microscopic Origin of Conducting Channels in Metallic Atom-Size Contacts Cuevas, J.C.;Yeyati, A.L.;Martin-Rodero, A.
  8. Phys. Rev. B v.60 no.24 Conduction Channels at Finite Bias in Single-Atom Gold Contacts Brandbyge, M.;Kobayashi, N.;Tsukada, M.
  9. Phys. Rev. B v.54 no.3 Energy Band for Manipulated Atomic Structures of Si, GaAs, and Mg on an Insulating Substrate Yamada, T.;Yamamoto, Y.
  10. Phys. Rev. B v.56 no.8 Conductance and Transparence of Long Molecular Wires Magoga, M.;Joachim, C.
  11. Phys. Rev. B v.59 no.12 Negative Differential Resistance in the Scanning-Tunneling Spectroscopy of Organic Molecules Xue, Y.;Datta, S.;Hong, S.;Reifenberger, R.;Henderson, J.I.;Kubiak, C.P.
  12. J. Phys., F: Met. Phys. v.14 Quick Iterative Scheme for the Calculation of Transfer Matrices: Application to Mo(100) Lopez Sancho, M.P.;Lopez Sancho, J.M.;Rubio, J.
  13. Computational methods in physics and engineering Wong, S.S.M.
  14. Phy. Rev. B v.57 no.11 Empirical spds Tight-binding Calculation for CUBIC semiconductors: General Method and Material Parameters Jancu, J.M.;Scholz, R.;Beltram, F.;Bassani, F.
  15. Electron-Wave Reection and Resonance Devices, Mesoscopic Physics and Electronics Asada, M.;Ando, T.(ed.);Arakawa, Y.(ed.);Furuya, K.(ed.);Komiyama, S.(ed.);Nakashima, H.(ed.)
  16. Phys. Rev. B v.40 no.3 Landauer's conductance formula and its generalization to finite voltages Begwell, P.F.;Orlando, T.P.
  17. Quantum mechanics - Vol. I Messiah, A.