• Title/Summary/Keyword: Energy balance flow

Search Result 184, Processing Time 0.029 seconds

Effect Analysis on Energy Efficiency Improvement for Establishing Energy Balance Flow (Energy Balance Flow 구축에 의한 에너지효율향상 효과분석)

  • Kim, Yong-Ha;Jo, Hyun-Mi;Sin, Hyung-Chul;Kim, Hyung-Jung;Woo, Sung-Min;Kim, Young-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.679-680
    • /
    • 2011
  • This paper is developed to Energy Balance Flow show the flow of total energy resource be used nationally. The Energy Balance Flow is applicable of demand management factor through the analysis of foreign energy model of supply and demand and energy statistic data in the country. This study is based on and developed to Energy system management model is able to appraisal efficient of energy cost cutting, CO2 emission reduction and Energy saving at the national level calculated effect reached amount of primary energy to change of energy flow followed application of demand side management factor is able to appraisal quantitatively at the total energy to model of demand and supply.

  • PDF

A study on Development of Korean - Energy System Management Model for Effect Analysis of Integrated Demand Management (통합수요관리 효과분석을 위한 한국형 Energy System Management 모형 개발에 관한 연구)

  • Kim, Yong-Ha;Jo, Hyun-Mi;Kim, Ui-Gyeong;Yoo, Jeong-Hui;Kim, Dong-Gun;Woo, Sung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1103-1111
    • /
    • 2011
  • This paper is developed to Energy Balance Flow show the flow of total energy resource be used nationally. The Energy Balance Flow is applicable of demand management factor through the analysis of foreign energy model of supply and demand and energy statistic data in the country. This study is based on and developed to Energy system management model is able to appraisal efficient of energy cost cutting, CO2 emission reduction and Energy saving at the national level calculated effect reached amount of primary energy to change of energy flow followed application of demand side management factor is able to appraisal quantitatively at the total energy to model of demand and supply.

An Experiment on the Effects of Free Stream Turbulence Intensity on the Backward-Facing Step Flow (자유흐름 난류강도가 후향계단유동에 미치는 영향에 대한 실험)

  • 김사량;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2297-2307
    • /
    • 1995
  • An experimental study on the structure of a separated shear layer downstream of the backward-facing step has been performed by examining mean flow and turbulent quantities in terms of free stream turbulence. When free stream turbulence exists, the entrainment rate of the separated shear layer and the flow rate in the recirculation region are enhanced, resulting in shorter reattachment length. The production and diffusion terms in the turbulent kinetic energy balance are shown to increase more than the dissipation term does. Rapid decrease of the pressure-strain term in the shear stress balance implies the enhancement of the three-dimensional motion by free stream turbulence.

Optimal Design of the Hoist Hydraulic System Including the Counter Balance Valve and Differential Cylinder Circuit (카운터밸런스밸브와 차동실린더회로를 포함한 호이스트 유압장치의 최적설계)

  • Lee, S.R.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.1
    • /
    • pp.13-19
    • /
    • 2008
  • The typical hydraulic system of hoist is composed of a hydraulic supply unit, a directional control valve, counter balance valve, and flow control valves. The flow capacity coefficients of flow control valves should be adjusted so that the hoist is operated at moderate speed and the hydraulic energy loss is minimized. However, it is difficult to adjust the flow coefficients of flow control valves by trial and error for optimal operation. Here, the steady state model of the hoist hydraulic system including the differential cylinder circuit is derived and the optimal flow capacity coefficients of flow control valves are obtained using the complex method that is one kind of constrained direct search method.

  • PDF

Thermodynamic Energy Balance Analysis of Underground Lined Rock Caverns (LRC) for Compressed Air Energy Storage (CAES) (복공식 지하 압축공기에너지 저장공동의 열역학적 에너지수지 분석)

  • Kim, Hyung-Mok;Park, Do-Hyun;Ryu, Dong-Woo;Choi, Byung-Hee;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.297-306
    • /
    • 2011
  • In this paper, we performed thermodynamic energy balance analysis of the underground lined rock cavern for compressed air energy storage (CAES) using the results of multi-phase heat flow analysis to simulate complex groundwater-compressed air flow around the cavern as well as heat transfer to concrete linings and surrounding rock mass. Our energy balance analysis demonstrated that the energy loss for a daily compression and decompression cycle predominantly depends on the energy loss by heat conduction to the concrete linings and surrounding rock mass for a sufficiently air-tight system with low permeability of the concrete linings. Overall energy efficiency of the underground lined rock caverns for CAES was sensitive to air injection temperature, and the energy loss by heat conduction can be minimized by keeping the air injection temperature closer to the ambient temperature of the surroundings. In such a case, almost all the heat loss during compression phase was gained back in a subsequent decompression phase. Meanwhile, the influence of heat conductivity of the concrete linings to energy efficiency was negligible.

Development of Energy Balance Program for Staged-Combustion Cycle of Liquid Rocket Engine (액체로켓엔진 통합 설계를 위한 에너지 발란스 프로그램 개발)

  • Lee, Sang-Bok;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.93-97
    • /
    • 2010
  • The energy balance program which can balance the relations among energy, mass flow, pressure in the staged-combustion cycle of the liquid rocket engine has been developed. The modular approach has been chosen for the analysis; the engine cycle consists of the elements from the predefined component analysis program. The engine with the staged-combustion cycle has been decomposed into several principal component modules, such as a thruster chamber, turbopumps, turbines, supply system components and a pre-burner. The program has been verified with comparison of the results to the selected data of the space shuttle main engine.

  • PDF

A Study on the Greenhouse Water Curtain System: Heat Transfer Characteristics

  • 손원명;한길영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.80-87
    • /
    • 1990
  • Energy balance equations Were developed to describe the heat transfer mechanisms in a double layer plastic greenhouse with a water curtain system. Heat transfer variables were determined by using various temperature data measured in a conventional prototype semicircular cross-section greenhouse over a range of water temperatures and water flow rates. The heat transfer coefficient between flowing water and greenhouse air was independent of water flow rates. But the heat transfer coefficient between water surface and the stagnant air space within the double plastic layer was dependent on water flow rates. Substituting the heat transfer coefficients, determined from the energy balance equations in the heat transfer equations, demonstrated various relationships among ambient air temperature, greenhouse air temperature, water temperature, and water flow rates. The heating benefits were linearly related to not only the inside and outside air temperatures but also to the water temperature. The energy conservation effects of the water curtain system were found even initial water temperatures were considerably lower than the greenhouse setting temperatures. Sensitivity analysis for heat transfer coefficients demonstrated that the heat transfer coefficient between greenhouse air and the stagnant air within the plastic layers was the most significant coefficient in the estimation of heating effects.

  • PDF

A Study on Effect Analysis of Integrated Demand Management According to Energy System Management Model (Energy System Management 모형을 통한 통합 수요관리 효과분석에 관한 연구)

  • Kim, Yong-Ha;Jo, Hyeon-Mi;Kim, Young-Gil;Park, Hwa-Yong;Kim, Hyeong-Jung;Woo, Sung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1339-1346
    • /
    • 2011
  • This paper is developed to demand management scenario of energy consumption efficiency improvement, electricity generation efficiency improvement, network efficiency improvement, change of distribution ratio, movement of energy source, change of heating system, put of CHP to quantitatively assess to impact on energy use of demand management at the national level. This scenario can be applied Energy System Management model was developed based on Energy Balance Flow. In addition, effect analysis through built demand management scenario was quantitatively evaluated integrated demand management effectiveness of energy cost saving, CO2 emission reduction and energy savings of national level by calculating to primary energy source usage change in terms of integration demand management effect more often than not a single energy source separated electricity, heat and gas.

A Modification of Departure from Nucleate Boiling Model Based on Mass, Energy, and Momentum Balance For Subcooled Flow Boiling in Vertical Tubes

  • Sul, Young-Sil;Lee, Kwang-Won;Ju, Kyong-In;Cheong, Jong-Sik;Yang, Jae-Young
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.108-113
    • /
    • 1996
  • Several analytical models for the departure from nucleate boiling (DNB) phenomenon have been developed during the last decade. Among these, Chang & Lee's model based on a bubble crowding mechanism is remarkable in the fundamental features characterized as the formulation of mass, energy, and momentum balance equation at thermal-hydraulic conditions leading to the DNB. However, Bricard and Souyri remarked that the assumption of stagnant bubbly layer at the DNB condition is questionable and the signs on the axial projections of the momentum fluxes at the core/bubbly layer interface in the momentum balance equations are erroneous. From this remark, Chang & Lee's model has been re-examined and modified by correcting the erroneous treatments in the momentum balance equations and removing the spurious assumptions. The revised model predicts well the extensive DNB data of water in uniformly heated tubes at low qualities and shows more accurate prediction compared with the original model.

  • PDF

Simulation of Temperature Behavior in Hydrogen Tank During Refueling Using Cubic Equations of State (3차 상태방정식을 이용한 수소 충전 온도 거동 모사)

  • PARK, BYUNG HEUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.5
    • /
    • pp.385-394
    • /
    • 2019
  • The analysis of temperature behavior of a hydrogen tank during refueling is of significance to clarify the safety of the compressed hydrogen storage in vehicles since the temperature at a tank rises with inflow of hydrogen. A mass balance and an energy balance were combined to obtain analytical model for temperature change during the hydrogen refueling. The equation was coupled to Peng-Robinson-Gasem (PRG) equation of state (EOS) for hydrogen. The PRG EOS was adopted after comparison with other four different cubic EOSs. A parameter of the model was determined to fit data from experiments of various inlet flow rates and temperatures. The temperature and pressure change with refueling time were obtained by the developed model. The calculation results revealed that the extent of precooling was more effective than the flow rate control.