• 제목/요약/키워드: Energy balance approach

검색결과 126건 처리시간 0.022초

유한요소법을 이용한 일반화된 에너지법과 옴의 적분법에 의한 방전 전류 계산 (Evaluation of Discharge Current Employing Generalized Energy Method and Integral Ohm's Law Using Finite Element Method)

  • 이호영;김홍준;이세희
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.357-361
    • /
    • 2011
  • The terminal current in voltage driven systems is an essential role for characterizing the pattern of electric discharge such as corona, breakdown, etc. Until now, to evaluate this terminal current, Sato's equation has been widely used in areas of high voltage and plasma discharge. Basically Sato's equation was derived by using the energy balance equation and its final form described physical meaning explicitly. To give more general abilities in Sato's equation, we present a generalized approach by directly using the Poynting's theorem incorporating the finite element method. When the magnetic field effect or the time-dependent voltage source is considered, this generalized energy method can be easily applicable to those problems with any dielectric media such as gas, fluid, and solid. As an alternative approach, the integral Ohm's law resulting in small numerical errors has an ability to be applied to multi-port systems. To test the generalized energy method and integral Ohm's law, first, the results from two prosed methods were compared to those from Sato's approach and an analytic solution in parallel plane electrodes. After verification, the generalized method was applied to the tip-sphere electrodes for evaluating the terminal current with three carriers and the Fowler-Nordheim field emission condition. From these results, we concluded that the generalized energy method can be a consistent technique for evaluating the discharge current with various dielectric materials or large magnetic field.

한방간호접근을 위한 이론적 고찰 (A Literature Review for Approach of Oriental Nursing)

  • 강현숙
    • 대한간호학회지
    • /
    • 제23권1호
    • /
    • pp.118-129
    • /
    • 1993
  • In order to approach the nursing care of clients who are using oriental medicine and to understand the perception of the client who uses oriental medicine practices and the need to develop a model of nursing related to oriental medicine it is important to examine the major nursing concepts as they are found in oriental medicine and as they are differently defined according to the basic thought, theory and philosophical perspectives between East and West. Oriental medicine developed based on Sung Confucianism the teachings of Chut-zu, especially Tai-Chi-Tu Shuo and energy thought which are similar to traditional Korean Sasang Constitutional medicine. The basic theory on which oriental medicine is build is the theory of the five elements of Yin / Eum-Yang Theory(cosmic dual forces) and Meridian Theory. The most important attribute of Yin Yang is the concept of duality, confrontation and dependence, within Yin Yang but which do not exist separately. That is, the universe is a vast, indivisible entity within which all things exist in harmonious interdependence and balance. Harmony is achieved only when the two primorial forces, Yin and Yang, are brought into perfect balance. Each is contained within the other and there is a continuing interchange between the two. This also applies to the human body including human health which is defined as balanced harmony. The most universal connection of Yin and Yang is found in the universe where the five elements of life, fire, water, earth, wood and metal can be explained as having either Yin or Yang and therefore being in a state of connectedness but systematically circulating between the two, that is essentalilly one (the control of the unified ) or as coexistant poles of individual wholes (the pluralism of Yin Yang Theory) so that it is all unified(balanced) in the Great Absoulte. Human beings also maintain a balance of Yin and Yang in the five elements and this relationship is very important in approaching ·oriental medicine, The meridians are the channels in the body through which the life force flow throughout the body. In oriental medicine the meridians are seen as the railroad, the acupuncture points on the meridians as the stations and energy as the train. In the normal healthy organism, all are maintained in balance and in a contiuous circulation of energy. illness is the result of the energy flow becoming disarranged. Although practitioners of oriental medicine approach the client differently than do practitioners of Western medicine and their method of examining the patient is different, the basic objectives of the examination are the same for practitioners of both types of medicine. Therefore if each could be used to supplement the defiencies in the other and achieve a harmonious cooperation between the two, a higher level of care which is culturally appropriate to korean culture could be achieved. The traditional korean concept of health is a naturalistic view which emphasizes being in harmony with nature. Any manifestation of disease is considered a sign that the body is in a state of disequilibrium and is thus no longer in harmony with the universe. The wholistic view of the world held by practitioners of oriental medicine can be used by nursing in the development of a world view of nursing in which the human being is seen within the macrocosm as part of the natural phenomenon of the universe and but also as a microcosm of the universe, a universe which is a vast and indivisible entity within which all things exist in harmonious interdependence and balance. Interaction between human beings and their environment and the relationship of this interaction to health are concepts that are also found in nursing. Nursing views human brings, not as an accumulation of separate cells and organs but, as unified wholes interacted in very close relationship nth their environment. Nursing also maintains a view of human beings in which emphasis is placed on the role of the mind in explaining the concepts of harmony and balance in health. Although there are differences between oriental medicine and nursing in approaches to clients, the basic point of view and philosophy have many fundamental similarites. An understanding of the basic thought and philosophy of oriental medicine if applied to nursing, would allow for the development, not only of nursing related to oriental medicine, but of a nursing theory appropriate to the korean context.

  • PDF

Active VM Consolidation for Cloud Data Centers under Energy Saving Approach

  • Saxena, Shailesh;Khan, Mohammad Zubair;Singh, Ravendra;Noorwali, Abdulfattah
    • International Journal of Computer Science & Network Security
    • /
    • 제21권11호
    • /
    • pp.345-353
    • /
    • 2021
  • Cloud computing represent a new era of computing that's forms through the combination of service-oriented architecture (SOA), Internet and grid computing with virtualization technology. Virtualization is a concept through which every cloud is enable to provide on-demand services to the users. Most IT service provider adopt cloud based services for their users to meet the high demand of computation, as it is most flexible, reliable and scalable technology. Energy based performance tradeoff become the main challenge in cloud computing, as its acceptance and popularity increases day by day. Cloud data centers required a huge amount of power supply to the virtualization of servers for maintain on- demand high computing. High power demand increase the energy cost of service providers as well as it also harm the environment through the emission of CO2. An optimization of cloud computing based on energy-performance tradeoff is required to obtain the balance between energy saving and QoS (quality of services) policies of cloud. A study about power usage of resources in cloud data centers based on workload assign to them, says that an idle server consume near about 50% of its peak utilization power [1]. Therefore, more number of underutilized servers in any cloud data center is responsible to reduce the energy performance tradeoff. To handle this issue, a lots of research proposed as energy efficient algorithms for minimize the consumption of energy and also maintain the SLA (service level agreement) at a satisfactory level. VM (virtual machine) consolidation is one such technique that ensured about the balance of energy based SLA. In the scope of this paper, we explore reinforcement with fuzzy logic (RFL) for VM consolidation to achieve energy based SLA. In this proposed RFL based active VM consolidation, the primary objective is to manage physical server (PS) nodes in order to avoid over-utilized and under-utilized, and to optimize the placement of VMs. A dynamic threshold (based on RFL) is proposed for over-utilized PS detection. For over-utilized PS, a VM selection policy based on fuzzy logic is proposed, which selects VM for migration to maintain the balance of SLA. Additionally, it incorporate VM placement policy through categorization of non-overutilized servers as- balanced, under-utilized and critical. CloudSim toolkit is used to simulate the proposed work on real-world work load traces of CoMon Project define by PlanetLab. Simulation results shows that the proposed policies is most energy efficient compared to others in terms of reduction in both electricity usage and SLA violation.

Making Utility-Integrated Energy Storage a Used, Useful and Universal Resource

  • Doosan GridTech
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제4권1호
    • /
    • pp.1-7
    • /
    • 2018
  • Objective signs are everywhere that the stationary energy storage market is growing up quickly. The use of distributed resources such as solar photovoltaics and electric vehicles are expanding at a rapid pace, creating technical challenges for the distribution system that will require energy storage and a new generation of software to address. This paper is intended for distribution utility managers and executives and makes the following points: ${\bullet}$ Utility-integrated (as opposed to merely grid-connected) energy storage projects represent a distinct, new wave of industry growth that is just getting underway and is required to manage distributed energy resources moving forward. ${\bullet}$ Utilities and the energy storage industry have important roles to lower risk in adopting this technology - thereby enabling this wave of growth. ${\circ}$ The industry must focus on engineering energy storage for adoption at scale - including the creation and support of software open standards -both to drive down costs and to limit technology and supplier risk for utilities. ${\circ}$ Utilities need to take a program-based, rather than a project- based, approach to this resource to best balance cost and risk as they procure and implement energy storage. By working together to drive down costs and manage risk, utilities and their suppliers can lay the energy storage foundation for a new, more digital distributed electricity system.

Parametric study of population balance model on the DEBORA flow boiling experiment

  • Aljosa Gajsek;Matej Tekavcic;Bostjan Koncar
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.624-635
    • /
    • 2024
  • In two-fluid simulations of flow boiling, the modeling of the mean bubble diameter is a key parameter in the closure relations governing the intefacial transfer of mass, momentum, and energy. Monodispersed approach proved to be insufficient to describe the significant variation in bubble size during flow boiling in a heated pipe. A population balance model (PBM) has been employed to address these shortcomings. During nucleate boiling, vapor bubbles of a certain size are formed on the heated wall, detach and migrate into the bulk flow. These bubbles then grow, shrink or disintegrate by evaporation, condensation, breakage and aggregation. In this study, a parametric analysis of the PBM aggregation and breakage models has been performed to investigate their effect on the radial distribution of the mean bubble diameter and vapor volume fraction. The simulation results are compared with the DEBORA experiments (Garnier et al., 2001). In addition, the influence of PBM parameters on the local distribution of individual bubble size groups was also studied. The results have shown that the modeling of aggregation process has the largest influence on the results and is mainly dictated by the collisions due to flow turbulence.

Chance-constrained Scheduling of Variable Generation and Energy Storage in a Multi-Timescale Framework

  • Tan, Wen-Shan;Abdullah, Md Pauzi;Shaaban, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1709-1718
    • /
    • 2017
  • This paper presents a hybrid stochastic deterministic multi-timescale scheduling (SDMS) approach for generation scheduling of a power grid. SDMS considers flexible resource options including conventional generation flexibility in a chance-constrained day-ahead scheduling optimization (DASO). The prime objective of the DASO is the minimization of the daily production cost in power systems with high penetration scenarios of variable generation. Furthermore, energy storage is scheduled in an hourly-ahead deterministic real-time scheduling optimization (RTSO). DASO simulation results are used as the base starting-point values in the hour-ahead online rolling RTSO with a 15-minute time interval. RTSO considers energy storage as another source of grid flexibility, to balance out the deviation between predicted and actual net load demand values. Numerical simulations, on the IEEE RTS test system with high wind penetration levels, indicate the effectiveness of the proposed SDMS framework for managing the grid flexibility to meet the net load demand, in both day-ahead and real-time timescales. Results also highlight the adequacy of the framework to adjust the scheduling, in real-time, to cope with large prediction errors of wind forecasting.

Dynamic Adjustment Strategy of n-Epidemic Routing Protocol for Opportunistic Networks: A Learning Automata Approach

  • Zhang, Feng;Wang, Xiaoming;Zhang, Lichen;Li, Peng;Wang, Liang;Yu, Wangyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권4호
    • /
    • pp.2020-2037
    • /
    • 2017
  • In order to improve the energy efficiency of n-Epidemic routing protocol in opportunistic networks, in which a stable end-to-end forwarding path usually does not exist, a novel adjustment strategy for parameter n is proposed using learning atuomata principle. First, nodes dynamically update the average energy level of current environment while moving around. Second, nodes with lower energy level relative to their neighbors take larger n avoiding energy consumption during message replications and vice versa. Third, nodes will only replicate messages to their neighbors when the number of neighbors reaches or exceeds the threshold n. Thus the number of message transmissions is reduced and energy is conserved accordingly. The simulation results show that, n-Epidemic routing protocol with the proposed adjustment method can efficiently reduce and balance energy consumption. Furthermore, the key metric of delivery ratio is improved compared with the original n-Epidemic routing protocol. Obviously the proposed scheme prolongs the network life time because of the equilibrium of energy consumption among nodes.

Time-Series Estimation based AI Algorithm for Energy Management in a Virtual Power Plant System

  • Yeonwoo LEE
    • 한국인공지능학회지
    • /
    • 제12권1호
    • /
    • pp.17-24
    • /
    • 2024
  • This paper introduces a novel approach to time-series estimation for energy load forecasting within Virtual Power Plant (VPP) systems, leveraging advanced artificial intelligence (AI) algorithms, namely Long Short-Term Memory (LSTM) and Seasonal Autoregressive Integrated Moving Average (SARIMA). Virtual power plants, which integrate diverse microgrids managed by Energy Management Systems (EMS), require precise forecasting techniques to balance energy supply and demand efficiently. The paper introduces a hybrid-method forecasting model combining a parametric-based statistical technique and an AI algorithm. The LSTM algorithm is particularly employed to discern pattern correlations over fixed intervals, crucial for predicting accurate future energy loads. SARIMA is applied to generate time-series forecasts, accounting for non-stationary and seasonal variations. The forecasting model incorporates a broad spectrum of distributed energy resources, including renewable energy sources and conventional power plants. Data spanning a decade, sourced from the Korea Power Exchange (KPX) Electrical Power Statistical Information System (EPSIS), were utilized to validate the model. The proposed hybrid LSTM-SARIMA model with parameter sets (1, 1, 1, 12) and (2, 1, 1, 12) demonstrated a high fidelity to the actual observed data. Thus, it is concluded that the optimized system notably surpasses traditional forecasting methods, indicating that this model offers a viable solution for EMS to enhance short-term load forecasting.

수요와 공급의 불확실성을 고려한 시간대별 순동예비력 산정 방안 (Dynamic Reserve Estimating Method with Consideration of Uncertainties in Supply and Demand)

  • 권경빈;박현곤;류재근;김유창;박종근
    • 전기학회논문지
    • /
    • 제62권11호
    • /
    • pp.1495-1504
    • /
    • 2013
  • Renewable energy integration and increased system complexities make system operator maintain supply and demand balance harder than before. To keep the grid frequency in a stable range, an appropriate spinning reserve margin should be procured with consideration of ever-changing system situation, such as demand, wind power output and generator failure. This paper propose a novel concept of dynamic reserve, which arrange different spinning reserve margin depending on time. To investigate the effectiveness of the proposed dynamic reserve, we developed a new short-term reliability criterion that estimates the probability of a spinning reserve shortage events, thus indicating grid frequency stability. Uncertainties of demand forecast error, wind generation forecast error and generator failure have been modeled in probabilistic terms, and the proposed spinning reserve has been applied to generation scheduling. This approach has been tested on the modified IEEE 118-bus system with a wind farm. The results show that the required spinning reserve margin changes depending on the system situation of demand, wind generation and generator failure. Moreover the proposed approach could be utilized even in case of system configuration change, such as wind generation extension.

시험용 연료 특성에 따른 자동차 연비측정 방법 개선에 관한 연구 (The Study on the improvement of vehicle fuel economy test method according to the characteristics of test fuel)

  • 이민호;김정환
    • 에너지공학
    • /
    • 제23권4호
    • /
    • pp.9-18
    • /
    • 2014
  • 시험방법 중 현재 국내 자동차 연비계산 방법은 차대동력계에 시험차량을 설치한 후, 주어진 시험모드(FTP-75 & HWFET 모드 등)에 따라 차량을 주행하여 측정되어지는 배출가스 결과를 가지고 계산에 의해 연비를 구하는 방식인 카본발란스 측정법(Carbon balance method)을 이용하고 있다. 이때 사용하고 있는 카본발란스 측정법은 시험방법 개발 당시의 표준연료에 대해 연료물성을 구하고, 이때 구하여진 상수 값과 시험에서 측정되어진 THC, CO, $CO_2$ 값을 가지고 계산하게 된다. 그러므로 시험할 때마다 매번 바뀌게 되는 사용 연료의 연료물성 특성은 정확히 고려되지 않게 된다. 주어진 시험연료에 따라 엔진성능 및 배출가스 결과가 변하게 되고, 많은 대체연료가 나오고 있는 현 시점에서 시험연료의 물성 특성을 연비계산 시에도 고려해야만 된다고 생각된다. 본 연구에서는 기존에 사용하고 있는 카본발란스법과 실제 시험에 사용된 연료의 유량을 측정하는 유량측정 방법을 이용한 결과를 비교하여, 시험에 사용된 연료의 물성 특성을 고려할 수 있는 방법을 연구함으로서, 다양해지고 있는 연료의 물성 특성을 고려해 줄 수 있는 개선된 연비측정 방법을 검토해 보고자 한다.