• Title/Summary/Keyword: Energy and Consumption

Search Result 6,389, Processing Time 0.037 seconds

Energy Efficient Sequential Sensing in Multi-User Cognitive Ad Hoc Networks: A Consideration of an ADC Device

  • Gan, Xiaoying;Xu, Miao;Li, He
    • Journal of Communications and Networks
    • /
    • v.14 no.2
    • /
    • pp.188-194
    • /
    • 2012
  • Cognitive networks (CNs) are capable of enabling dynamic spectrum allocation, and thus constitute a promising technology for future wireless communication. Whereas, the implementation of CN will lead to the requirement of an increased energy-arrival rate, which is a significant parameter in energy harvesting design of a cognitive user (CU) device. A well-designed spectrum-sensing scheme will lower the energy-arrival rate that is required and enable CNs to self-sustain, which will also help alleviate global warming. In this paper, spectrum sensing in a multi-user cognitive ad hoc network with a wide-band spectrum is considered. Based on the prospective spectrum sensing, we classify CN operation into two modes: Distributed and centralized. In a distributed network, each CU conducts spectrum sensing for its own data transmission, while in a centralized network, there is only one cognitive cluster header which performs spectrum sensing and broadcasts its sensing results to other CUs. Thus, a wide-band spectrum that is divided into multiple sub-channels can be sensed simultaneously in a distributed manner or sequentially in a centralized manner. We consider the energy consumption for spectrum sensing only of an analog-to-digital convertor (ADC). By formulating energy consumption for spectrum sensing in terms of the sub-channel sampling rate and whole-band sensing time, the sampling rate and whole-band sensing time that are optimal for minimizing the total energy consumption within sensing reliability constraints are obtained. A power dissipation model of an ADC, which plays an important role in formulating the energy efficiency problem, is presented. Using AD9051 as an ADC example, our numerical results show that the optimal sensing parameters will achieve a reduction in the energy-arrival rate of up to 97.7% and 50% in a distributed and a centralized network, respectively, when comparing the optimal and worst-case energy consumption for given system settings.

Efficient Grid-Independent ESS Control System by Prediction of Energy Production Consumption (에너지 생산량 소비량 예측을 통한 효율적인 계통 독립형 ESS 제어 시스템)

  • Joo, Jong-Yul;Oh, Jae-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.155-160
    • /
    • 2019
  • In this paper, we propose an efficient grid-independent ESS control system through the control of renewable energy and agricultural ICT by utilizing the prediction of energy production and consumption. The proposed system is an integrated management system that can perform maintenance and monitoring by visualizing the accurate phase and data of power system. It can automatically cope, collect, process, and control the data. Also, it can analyze the power generation of solar power generation, consumption pattern of installed facilities, and operation trend of facilities. Further, it can predict the consumption of energy production and present the optimal energy management method by using the OpenAPI of the Korea Meteorological Administration, thereby reducing unnecessary energy consumption and operating cost.

Impact of Reinforced Standard for Envelope Insulation on the Regional Heating and Cooling Energy Consumption (강화된 건물 외피 단열기준의 지역별 냉난방에너지 감소 효과)

  • Moon, Jin-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.10
    • /
    • pp.646-655
    • /
    • 2011
  • This study aimed at quantifying the impact of the reinforced standard for envelope insulation on heating and cooling energy consumption in a Korean detached house as well as at identifying the effect of regionally subdivided standards. For them, a series of simulations for application of the reinforced standard on respective walls, roof, floor, windows, and all envelopes were computationally conducted for a prototypical detached residential building. In addition, the subdivided standards were applied to each regions-central and southern regions, and the Jeju island. Analysis revealed that heat transfer through envelopes was the most significant source of building heat gain and loss; the reinforced standard effectively reduced heating energy consumptions, especially in central region; and the subdivided standards did not presented a clear difference in the amount of energy consumption for the southern region and the Jeju island, thus, a further study is required to investigate the necessity of regional subdivisions.

User Experience Assisted Energy-Efficient Software Design for Mobile Devices on the big.LITTLE Core Architecture (사용자 경험을 기반으로 big.LITTLE 멀티코어 구조의 스마트 모바일 단말의 에너지 소비를 최적화 하는 소프트웨어 구조 설계)

  • Lim, Sung-Hwa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.23-28
    • /
    • 2020
  • In Smart mobile devices embedding big.LITTLE architectures, the conventional multi-core assignment scheme for user applications may incur wasteful energy consumption and long response time. In this paper, we propose a user experience assisted energy-efficient multicore assignment scheme. Our simulation results show that the proposed scheme achieves at 40% less energy consumption and at 20% less response time comparing to the legacy scheme.

A Study on a Efficiency of Glazing for Energy Reduction of Curtain Wall Buildings (유리성능에 따른 커튼월건물의 에너지절약효과에 대한 연구 -표준건물 에너지소비와의 비교분석을 중심으로-)

  • Lee, Yong-Jun;Jung, Kwang-Sub;Oh, Bo-Hwan;Kang, Jae-Sik;Choi, Kyoung-Suk;Lee, Deuk-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.114-119
    • /
    • 2009
  • This study has been conducted to describe the establishment of national measures to reduce world energy consumption and $CO_2$ Emission. Particularly, Reductions in energy consumption from building operation is the most important part to achieve these national objectives. Element to evaluate the quantitative effects of these systems by having rationalized regulation and operation is essential, when planning for building energy reduction design. USGBC(US Green Building Council) have operated sustainable assessment method called LEED, which introduces baseline performance and evaluation direction for building simulation techniques. This research analyzed Quantitative assessments of the building energy consumption and analyzed baseline figures to provide comparative analysis with standard building settings.

  • PDF

Efficient Cluster Radius and Transmission Ranges in Corona-based Wireless Sensor Networks

  • Lai, Wei Kuang;Fan, Chung-Shuo;Shieh, Chin-Shiuh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1237-1255
    • /
    • 2014
  • In wireless sensor networks (WSNs), hierarchical clustering is an efficient approach for lower energy consumption and extended network lifetime. In cluster-based multi-hop communications, a cluster head (CH) closer to the sink is loaded heavier than those CHs farther away from the sink. In order to balance the energy consumption among CHs, we development a novel cluster-based routing protocol for corona-structured wireless sensor networks. Based on the relaying traffic of each CH conveys, adequate radius for each corona can be determined through nearly balanced energy depletion analysis, which leads to balanced energy consumption among CHs. Simulation results demonstrate that our clustering approach effectively improves the network lifetime, residual energy and reduces the number of CH rotations in comparison with the MLCRA protocols.

Way-set Associative Management for Low Power Hybrid L2 Cache Memory (고성능 저전력 하이브리드 L2 캐시 메모리를 위한 연관사상 집합 관리)

  • Jung, Bo-Sung;Lee, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.3
    • /
    • pp.125-131
    • /
    • 2018
  • STT-RAM is attracting as a next generation Non-volatile memory for replacing cache memory with low leakage energy, high integration and memory access performance similar to SRAM. However, there is problem of write operations as the other Non_volatile memory. Hybrid cache memory using SRAM and STT-RAM is attracting attention as a cache memory structure with lowe power consumption. Despite this, reducing the leakage energy consumption by the STT-RAM is still lacking access to the Dynamic energy. In this paper, we proposed as energy management method such as a way-selection approach for hybrid L2 cache fo SRAM and STT-RAM and memory selection method of write/read operation. According to the simulation results, the proposed hybrid cache memory reduced the average energy consumption by 40% on SPEC CPU 2006, compared with SRAM cache memory.

Employing an Energy-efficient Pattern for Coverage Problem in WSNs (무선센서네크워크에서 커버리지 문제를 해결하기 위한 에너지효율적인 패턴)

  • Dao, Manh Thuong Quan;Le, Duc Tai;Ahn, Min-Joon;Choo, Hyun-Seung
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.601-602
    • /
    • 2011
  • In wireless sensor networks, coverage problem is a fundamental issue that has attracted considerable attention in recent years. Most node scheduling patterns utilize the adjustable range of sensor to minimize the sensing energy consumption. However, a large source of consumption of communication energy of sensor is not strictly taken into account. In this paper, we introduce an energy-efficient pattern that is used to minimize the communication energy consumption of a sensor network. Calculations and extensive simulation are conducted to evaluate the efficiency of the new pattern comparing to existing ones.

A Study on the Development of the Advanced Energy Performance Indicator for the Manufacturing Companies (제조업체의 에너지성과지표 고도화에 관한 연구)

  • Rho, Kyung-Wan;Song, Myung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.5
    • /
    • pp.31-38
    • /
    • 2015
  • It is important to improve the energy performance in the industrial sector, and therefore most of the manufacturing companies need the energy performance indicators to identify the target and to verify the energy savings. However, the conventional energy performance indicators such as the total energy consumption and the energy intensity are not proper to use. The reason is that they do not consider adequate relevant variables including productions in the boundary of the manufacturing companies. Therefore, the study provides the advanced energy performance indicator using by the linear regression model according to each energy source to manage the target and to verify the energy performance properly.

Assessment of Wind Power Resources for Rural Green-village Planning (농촌 그린빌리지 계획을 위한 풍력에너지 자원분석)

  • Nam, Sang-Woon;Kim, Dae-Sik
    • Journal of Korean Society of Rural Planning
    • /
    • v.14 no.2
    • /
    • pp.25-32
    • /
    • 2008
  • Wind energy, which is one of renewable energy, would be useful resources that can be applied to making energy recycling villages without using fossil fuels. This study analyzed energy potential on wind power considering weather condition in three rural villages and compared with energy consumption surveyed. A wind turbine system in the 5kW class can generate 26.1%, 73.9% and 39.5% of the yearly mean consumption of electric power per house in Makhyun, Boojang and Soso respectively. A 750kW wind turbine system can generate 1.7%, 30.3% and 22.1% of the total amount of electric power consumption in three study villages respectively. Wind power energy density was too low in Makhyun and Soso, so it is determined that the application of wind turbine system is almost impossible. Wind energy potential was generally low in Boojang either, but it is evaluated that there is a little possibility of wind power generation relatively. For practical application of renewable energy to rural green-village planning, assessment of energy potential for the local area should be preceded.