• Title/Summary/Keyword: Energy and Consumption

Search Result 6,389, Processing Time 0.038 seconds

Development of Energy-sensitive Cluster Formation and Cluster Head Selection Technique for Large and Randomly Deployed WSNs

  • Sagun Subedi;Sang Il Lee
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Energy efficiency in wireless sensor networks (WSNs) is a critical issue because batteries are used for operation and communication. In terms of scalability, energy efficiency, data integration, and resilience, WSN-cluster-based routing algorithms often outperform routing algorithms without clustering. Low-energy adaptive clustering hierarchy (LEACH) is a cluster-based routing protocol with a high transmission efficiency to the base station. In this paper, we propose an energy consumption model for LEACH and compare it with the existing LEACH, advanced LEACH (ALEACH), and power-efficient gathering in sensor information systems (PEGASIS) algorithms in terms of network lifetime. The energy consumption model comprises energy-sensitive cluster formation and a cluster head selection technique. The setup and steady-state phases of the proposed model are discussed based on the cluster head selection. The simulation results demonstrated that a low-energy-consumption network was introduced, modeled, and validated for LEACH.

Comparative Studies on Lighting Environment and Energy Performance depending on the Transmittance of Window and Slat Angle of Blind (창호의 투과율과 블라인드 슬랫각도에 따른 빛환경 및 에너지성능 비교 연구)

  • Sim, Se-Ra;Yoon, Jong-Ho;Shin, U-Cheul
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.256-263
    • /
    • 2011
  • Recently, curtain wall structure is constructed according to increasing high rise building. Glass is usually used in opening of curtain wall structure and window area ratio is finally increased. Excessive Daylighting and solar radiation by large window area ratio cause discomfort glare and add to cooling load in the case of office that is heavy on lighting and cooling. Therefore, this study suggests to use low transmittance window for solve those problems. Indoor lighting environment and building energy performance were analyzed by increasing transmittance from 10% to 90% and comparing fixed venetian blind. Consequently, the range of transmittance that is possible to daylighting and prevent discomfort glare. Secondary energy consumption is efficient in the case that transmittance is the range of from 20% to 50%, primary energy consumption is nice on from 20% to 40%. If those result put together, the range of window transmittance from 30% to 50% is proper in the office in lighting environment and energy consumption aspects.

  • PDF

A Novel Improved Energy-Efficient Cluster Based Routing Protocol (IECRP) for Wireless Sensor Networks

  • Inam, Muhammad;Li, Zhuo;Zardari, Zulfiqar Ali
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.2
    • /
    • pp.67-72
    • /
    • 2021
  • Wireless sensor networks (WSNs) require an enormous number of sensor nodes (SNs) to maintain processing, sensing, and communication capabilities for monitoring targeted sensing regions. SNs are generally operated by batteries and have a significantly restricted energy consumption; therefore, it is necessary to discover optimization techniques to enhance network lifetime by saving energy. The principal focus is on reducing the energy consumption of packet sharing (transmission and receiving) and improving the network lifespan. To achieve this objective, this paper presents a novel improved energy-efficient cluster-based routing protocol (IECRP) that aims to accomplish this by decreasing the energy consumption in data forwarding and receiving using a clustering technique. Doing so, we successfully increase node energy and network lifetime. In order to confirm the improvement of our algorithm, a simulation is done using matlab, in which analysis and simulation results show that the performance of the proposed algorithm is better than that of two well-known recent benchmarks.

E2GSM: Energy Effective Gear-Shifting Mechanism in Cloud Storage System

  • You, Xindong;Han, GuangJie;Zhu, Chuan;Dong, Chi;Shen, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4681-4702
    • /
    • 2016
  • Recently, Massive energy consumption in Cloud Storage System has attracted great attention both in industry and research community. However, most of the solutions utilize single method to reduce the energy consumption only in one aspect. This paper proposed an energy effective gear-shifting mechanism (E2GSM) in Cloud Storage System to save energy consumption from multi-aspects. E2GSM is established on data classification mechanism and data replication management strategy. Data is classified according to its properties and then be placed into the corresponding zones through the data classification mechanism. Data replication management strategies determine the minimum replica number through a mathematical model and make decision on replica placement. Based on the above data classification mechanism and replica management strategies, the energy effective gear-shifting mechanism (E2GSM) can automatically gear-shifting among the nodes. Mathematical analytical model certificates our proposed E2GSM is energy effective. Simulation experiments based on Gridsim show that the proposed gear-shifting mechanism is cost effective. Compared to the other energy-saved mechanism, our E2GSM can save energy consumption substantially at the slight expense of performance loss while meeting the QoS of user.

Institutional Arrangement and Policy Context Underlying Sustainability Actions in the U.S.: Lessons for Asian Regions

  • Hwang, Joungyoon;Song, Minsun;Cho, Seong
    • Journal of Contemporary Eastern Asia
    • /
    • v.19 no.1
    • /
    • pp.59-83
    • /
    • 2020
  • This paper examines the actions and the factors driving those actions to reduce energy consumption and enhance energy efficiency taken by United States cities. While not much empirical evidence is available on why governments pursue practical sustainability actions, we attempt to shed more light on this important topic by empirically identifying factors that contribute to concrete actions toward sustainability policies. We adopt political market theory as a basic theoretical framework with policy-making applied to city energy consumption. Using the 2010 ICMA (local government sustainability policies and program) data, this study expands the focus of analyses to evaluate the effect of the form of government on energy consumption and energy efficiency by using multiple regression analysis. The findings show that at the city level, the mayor-council form of government are negatively associated with governments' efforts to reduce energy consumption. However, cities with at-large elections and municipal ownership are more likely to adopt sustainability actions. We also find that a large-scale economy has significant effects on the effort to reduce city energy consumption and improve energy efficiency. This shows that environmental policies are directly connected to locally relevant affairs, including housing, energy use, green transportation, and water. Thus, local level administrators could take an executive role to protect the environment, encourage the development of alternative energy, and reduce the use of fossil fuel and coal energy. These efforts can lead to important environmental ramifications and relevant actions by municipal governments.

Energy Efficient Software Development Techniques for Cloud based Applications

  • Aeshah A. Alsayyah;Shakeel Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.119-130
    • /
    • 2023
  • Worldwide organizations use the benefits offered by Cloud Computing (CC) to store data, software and programs. While running hugely complicated and sophisticated software on cloud requires more energy that causes global warming and affects environment. Most of the time energy consumption is wasted and it is required to explore opportunities to reduce emission of carbon in CC environment to save energy. Many improvements can be done in regard to energy efficiency from the software perspective by considering and paying attention on the energy consumption aspects of software's that run on cloud infrastructure. The aim of the current research is to propose a framework with an additional phase called parameterized development phase to be incorporated along with the traditional Software Development Life cycle (SDLC) where the developers need to consider the suggested techniques during software implementation to utilize low energy for running software on the cloud and contribute in green computing. Experiments have been carried out and the results prove that the suggested techniques and methods has enabled in achieving energy consumption.

Analysis of the Relationships among Energy, Economic Growth and Greenhouse Gas Emissions Using Metropolitan City/Province Level Data (광역시·도별 자료를 이용한 에너지, 경제성장, 온실가스 배출 간의 관계 분석)

  • Lee, Jaeseok;Lee, Keun-Dae;Yu, Bok-Keun
    • Environmental and Resource Economics Review
    • /
    • v.30 no.3
    • /
    • pp.503-533
    • /
    • 2021
  • This paper analyzes the relationships among the energy consumption, renewable energy production, real gross regional domestic product(GRDP), and greenhouse gas(GHG) emissions. It uses the metropolitan city and province level data for Korea from 2010 to 2018, employing a panal vector autoregressive(VAR) model. We find that an increase in energy consumption has a limited impact on boosting renewable energy production or gross regional domestic product, while it leads to an increase in greenhouse gas emissions. A rise in renewable energy production can increase gross regional domestic product, but it has no meaningful effects on energy consumption and the reduction of green house gas emissions. Our finding indicates that it is crucial to expand the supply of renewable energy as well as to decrease energy consumption in order to achieve the goal of reducing greenhouse gas emissions and reaching economic growth.

The Analysis on the Evaluation Items of Korea Green Building Certification Criteria by the Case Studies of Collective Housing (국내 공동주택 부문의 친환경건축 인증 평가 항목 및 사례 분석)

  • Kim, Chang-Sung
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.93-100
    • /
    • 2013
  • Many countries have made their best to protect the earth from global warming and to find solutions for the reduction of carbon dioxide emittion and energy consumption. Especially, buildings have emitted over 40% of carbon dioxide against whole quantities emitted to the earth. Therefore, the reduction of carbon dioxide emitted from buildings require to save the earth environment. Energy consumption of buildings in Korea has reached 24% of total energy quantities, and energy consumption of collective housing has been continuously increasing. So, Korea government has also executed the Green Building Certification Criteria(GBCC). The GBCC evaluates the 8 types of buildings - collective housing, office, school, etc - to certificate the green building. In this paper, the evaluation items of collective housing in GBCC were reviewed to be used as the reference data for future revisions by the case studies. According to the results of this study, current version of GBCC requires additional revisions about the evaluations of energy consumption monitoring, commissioning and existing building.

Analysis of energy consumption of office building by thermal resistance-capacitance method (열저항-열용량법에 의한 사무실용 건물의 소비에너지 해석)

  • Lee, C.S.;Choi, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-13
    • /
    • 1997
  • This paper reports the dynamic analysis of energy consumption for an office building by heat resistance-capacitance method. If a building is divided into several wall components and the wall components is replaced by one thermal capacitance and several thermal resistances, the building becomes an electric circuit. By solving the simultaneous equations of the circuit, the dynamic heat transfer characteristics and the energy consumption rate of the building were predicted. Accuracy of modified BIN method was evaluated by the present resistance-capacitance method. The result shows that modified BIN method overpredicts the heating load of the office building 15%. Annual energy consumptions of equipments(fan, boiler, chiller) for various ventilating control system(CAV, VAV, FCU+VAV, FCU+CAV) were compared. FCU+CAV shows the minimum annual energy consumption.

  • PDF

LMDI Decomposition Analysis for Electricity Consumption in Korean Manufacturing (LMDI 요인 분해분석을 이용한 우리나라 제조업 전력화 현상에 관한 연구)

  • Han, Joon
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.137-148
    • /
    • 2015
  • So far, the phenomenon of "electrification" has been deepened in Korean industry and especially direct heating energy which accounted for 44.0%(2010) of total energy consumed in Korean manufacturing has been significantly electrified. This paper decomposed electricity consumption for direct heating in Korean manufacturing from 1992 to 2012 using LMDI(Log Mean Divisia Index). This paper includes 4 different factors such as electricity proportion effect, direct heating proportion effect, energy intensity effect and added value effect. And this paper compared the consumption pattern by business type. As results, electricity proportion effect had contributed the most to the increase of electricity consumption for direct heating in Korean manufacturing. And Petrol-Chemical and Iron & Steel had the most electrification of direct heating.