• 제목/요약/키워드: Energy allocation

검색결과 367건 처리시간 0.029초

Energy-Efficiency Power Allocation for Cognitive Radio MIMO-OFDM Systems

  • Zuo, Jiakuo;Dao, Van Phuong;Bao, Yongqiang;Fang, Shiliang;Zhao, Li;Zou, Cairong
    • ETRI Journal
    • /
    • 제36권4호
    • /
    • pp.686-689
    • /
    • 2014
  • This paper studies energy-efficiency (EE) power allocation for cognitive radio MIMO-OFDM systems. Our aim is to minimize energy efficiency, measured by "Joule per bit" metric, while maintaining the minimal rate requirement of a secondary user under a total power constraint and mutual interference power constraints. However, since the formulated EE problem in this paper is non-convex, it is difficult to solve directly in general. To make it solvable, firstly we transform the original problem into an equivalent convex optimization problem via fractional programming. Then, the equivalent convex optimization problem is solved by a sequential quadratic programming algorithm. Finally, a new iterative energy-efficiency power allocation algorithm is presented. Numerical results show that the proposed method can obtain better EE performance than the maximizing capacity algorithm.

혼합된 변조 방식을 적용한 차등 분산 협력 네트워크의 자원 할당 효과 (Effect of Resource Allocation in Differential Distributed Cooperative Networks with Mixed Signaling Scheme)

  • 조웅
    • 한국전자통신학회논문지
    • /
    • 제15권6호
    • /
    • pp.1131-1136
    • /
    • 2020
  • 협력 네트워크는 중계기를 이용하여 신호를 전송하고, 수신기에서는 여러 중계기를 통해서 수신된 신호를 결합하여 복조함으로써 통신성능을 향상시킬 수 있다. 본 논문에서는 송신기-중계기 사이에서는 일반적인 변조 방식을 사용하고 중계기-수신기 사이에서는 공간 시간 코드 방식을 적용하는 협력 네트워크 시스템을 가정하여, 자원 할당에 따른 효과를 분석한다. 일반적인 변조 방식은 동기 변조 방식과 차등 변조 방식 두 가지를 고려하고 공간 시간 코드 방식은 차등 변조 방식을 적용한다. 자원 할당은 중계기의 위치와 전송에너지를 고려하며 중계기의 개수에 따른 성능 또한 분석한다.

On-demand Allocation of Multiple Mutual-compensating Resources in Wireless Downlinks: a Multi-server Case

  • Han, Han;Xu, Yuhua;Huang, Qinfei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권3호
    • /
    • pp.921-940
    • /
    • 2015
  • In this paper, we investigate the multi-resource allocation problem, a unique feature of which is that the multiple resources can compensate each other while achieving the desired system performance. In particular, power and time allocations are jointly optimized with the target of energy efficiency under the resource-limited constraints. Different from previous studies on the power-time tradeoff, we consider a multi-server case where the concurrent serving users are quantitatively restricted. Therefore user selection is investigated accompanying the resource allocation, making the power-time tradeoff occur not only between the users in the same server but also in different servers. The complex multivariate optimization problem can be modeled as a variant of 2-Dimension Bin Packing Problem (V2D-BPP), which is a joint non-linear and integer programming problem. Though we use state decomposition model to transform it into a convex optimization problem, the variables are still coupled. Therefore, we propose an Iterative Dual Optimization (IDO) algorithm to obtain its optimal solution. Simulations show that the joint multi-resource allocation algorithm outperforms two existing non-joint algorithms from the perspective of energy efficiency.

Resource allocation in downlink SWIPT-based cooperative NOMA systems

  • Wang, Longqi;Xu, Ding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권1호
    • /
    • pp.20-39
    • /
    • 2020
  • This paper considers a downlink multi-carrier cooperative non-orthogonal multiple access (NOMA) transmission, where no direct link exists between the far user and the base station (BS), and the communication between them only relies on the assist of the near user. Firstly, the BS sends a superimposed signal of the far and the near user to the near user, and then the near user adopts simultaneous wireless information and power transfer (SWIPT) to split the received superimposed signal into two portions for energy harvesting and information decoding respectively. Afterwards, the near user forwards the signal of the far user by utilizing the harvested energy. A minimum data is required to ensure the quality of service (QoS) of the far user. We jointly optimize power allocation, subcarrier allocation, time allocation, the power allocation (PA) coefficient and the power splitting (PS) ratio to maximize the number of data bits received at the near user under the energy causality constraint, the minimum data constraint and the transmission power constraint. The block-coordinate descent method and the Lagrange duality method are used to obtain a suboptimal solution of this optimization problem. In the final simulation results, the superiority of the proposed NOMA scheme is confirmed compared with the benchmark NOMA schemes and the orthogonal multiple access (OMA) scheme.

채널 추정 오차가 존재하는 에너지 하베스팅 네트워크에서 에너지 효율성을 최대화 하는 자원할당 방안 (Resource Allocation for Maximizing Energy Efficiency in Energy Harvesting Networks with Channel Estimation Error)

  • 이기송;홍준표
    • 한국정보통신학회논문지
    • /
    • 제20권3호
    • /
    • pp.506-512
    • /
    • 2016
  • 최근 에너지 하베스팅 기술은 배터리 용량 부족 문제를 해결하여 네트워크 수명을 향상시킬 수 있는 방안으로 관심을 받고 있다. 하지만 기존 연구의 경우 정확한 채널정보를 바탕으로 한 이상적인 환경에서의 하베스팅 기술만을 고려하였다. 본 논문에서는 채널 추정 절차와 이에 따른 채널 추정 오차를 반영한 현실적 에너지 하베스팅 네트워크 환경에서 에너지 효율성을 향상시키기 위한 자원 할당 기법을 제안한다. 제안 기법에서는 최적화 기법을 이용하여 시스템 데이터 전송률, 에너지 획득량, 불완전한 채널 추정 특성 등을 동시에 고려한 스케줄링 및 파워 할당 해를 찾는다. 제안 기법은 에너지 효율성 관점에서 기존의 하베스팅 기법보다 향상된 성능을 보이며, 채널 추정 오차가 반영되었을 때의 에너지 효율적 자원할당 방법에 대한 새로운 정보를 제공한다.

DEA를 활용한 중앙집중식 온실가스 감축 할당 모형 (Centralized Allocation of GHG Emissions based on DEA)

  • 조나래;민대기
    • 대한산업공학회지
    • /
    • 제43권3호
    • /
    • pp.203-212
    • /
    • 2017
  • Emissions Trading System (ETS) is utilized in many countries, including South Korea, as an efficient policy to abate GHG (Greenhouse Gas) emissions. Grandfathering on the basis of historic emissions is used as the way to allocate permits in South Korea. It, however, has caused an increase in the emission permits and lack of equity. To overcome these drawbacks, we propose an alternative DEA model for centralized allocation of emission abatement to evaluate the amount of emissions abatement by company based on the energy efficiency. In addition, an empirical analysis of 36 assigned companies for ETS in Korean metal industry is conducted to validate the feasibility of the proposed model. The result of the analysis shows that energy-efficient companies achieve reduced target of the emissions abatement and companies with low energy efficiency score are turned out to have contrary outcome, against the result of applying Grandfathering.

Energy Efficiency Resource Allocation for MIMO Cognitive Radio with Multiple Antenna Spectrum Sensing

  • Ning, Bing;Yang, Shouyi;Mu, Xiaomin;Lu, Yanhui;Hao, Wanming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권11호
    • /
    • pp.4387-4404
    • /
    • 2015
  • The energy-efficient design of sensing-based spectrum sharing of a multi-input and multi-output (MIMO) cognitive radio (CR) system with imperfect multiple antenna spectrum sensing is investigated in this study. Optimal resource allocation strategies, including sensing time and power allocation schemes, are studied to maximize the energy efficiency (EE) of the secondary base station under the transmit power and interference power constraints. EE problem is formulated as a nonlinear stochastic fractional programming of a nonconvex optimal problem. The EE problem is transformed into its equivalent nonlinear parametric programming and solved by one-dimension search algorithm. To reduce searching complexity, the search range was founded by demonstration. Furthermore, simulation results confirms that an optimal sensing time exists to maximize EE, and shows that EE is affected by the spectrum detection factors and corresponding constraints.

Achievable Rate Region Bounds and Resource Allocation for Wireless Powered Two Way Relay Networks

  • Di, Xiaofei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.565-581
    • /
    • 2019
  • This paper investigates the wireless powered two way relay network (WPTWRN), where two single-antenna users and one single-antenna relay firstly harvest energy from signals emitted by a multi-antenna power beacon (PB) and then two users exchange information with the help of the relay by using their harvested energies. In order to improve the energy transfer efficiency, energy beamforming at the PB is deployed. For such a network, to explore the performance limit of the presented WPTWRN, an optimization problem is formulated to obtain the achievable rate region bounds by jointly optimizing the time allocation and energy beamforming design. As the optimization problem is non-convex, it is first transformed to be a convex problem by using variable substitutions and semidefinite relaxation (SDR) and then solve it efficiently. It is proved that the proposed method achieves the global optimum. Simulation results show that the achievable rate region of the presented WPTWRN architecture outperforms that of wireless powered one way relay network architecture. Results also show that the relay location has significant impact on achievable rate region of the WPTWRN.

Energy-Efficient Resource Allocation for Heterogeneous Cognitive Radio Network based on Two-Tier Crossover Genetic Algorithm

  • Jiao, Yan;Joe, Inwhee
    • Journal of Communications and Networks
    • /
    • 제18권1호
    • /
    • pp.112-122
    • /
    • 2016
  • Cognitive radio (CR) is considered an attractive technology to deal with the spectrum scarcity problem. Multi-radio access technology (multi-RAT) can improve network capacity because data are transmitted by multiple RANs (radio access networks) concurrently. Thus, multi-RAT embedded in a cognitive radio network (CRN) is a promising paradigm for developing spectrum efficiency and network capacity in future wireless networks. In this study, we consider a new CRN model in which the primary user networks consist of heterogeneous primary users (PUs). Specifically, we focus on the energy-efficient resource allocation (EERA) problem for CR users with a special location coverage overlapping region in which heterogeneous PUs operate simultaneously via multi-RAT. We propose a two-tier crossover genetic algorithm-based search scheme to obtain an optimal solution in terms of the power and bandwidth. In addition, we introduce a radio environment map to manage the resource allocation and network synchronization. The simulation results show the proposed algorithm is stable and has faster convergence. Our proposal can significantly increase the energy efficiency.

A QEE-Oriented Fair Power Allocation for Two-tier Heterogeneous Networks

  • Ji, Shiyu;Tang, Liangrui;He, Yanhua;Li, Shuxian;Du, Shimo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권5호
    • /
    • pp.1912-1931
    • /
    • 2018
  • In future wireless network, user experience and energy efficiency will play more and more important roles in the communication systems compared to their roles at present. Quality of experience (QoE) and Energy Efficiency (EE) become the widely used metrics. In this paper, we study a combinatorial problem of QoE and EE and investigate a fair power allocation in heterogeneous networks. We first design a new metric, QoE-aware EE (QEE) to reflect the relationship of QoE and energy. Then, the concept of Utopia QEE is introduced, which is defined as the achievable maximum QEE in ideal conditions, for each user. Finally, we transform the power allocation process to an optimization of ratio of QEE and Utopia QEE and use invasive weed optimization (IWO) algorithm to solve the optimization problem. Numerical simulation results indicate that the proposed algorithm can get converged and efficiently improve the system energy efficiency and the QoE for each user.