• Title/Summary/Keyword: Energy Window

Search Result 693, Processing Time 0.026 seconds

Window-to-Wall-Ratio for Energy Reduction in Early Design Stage of Residential Building

  • Lee, Myung Sik
    • Architectural research
    • /
    • v.19 no.4
    • /
    • pp.89-94
    • /
    • 2017
  • In Korea, it is necessary to improve the performance of buildings with respect to the energy efficiency while improving the quality of occupants' lives through a sustainable built environment. During the design and development process, building projects must have a comprehensive, integrated perspective that seeks to reduce heating, cooling and lighting loads through climate-responsive designs. The aim of this study is to assess the optimal window-to-wall ratio of multi-rise residential units in the early design phase in Korea. The study analyzed the variation of annual heating and cooling energy load in two apartment prototype units located in Seoul city using different WWRs. The analysis was conducted using Autodesk Ecotect Analysis 2011 tool. The study found for total annual building load reductions WWR on the south and north face should be studied independently based on the room function. It also found reducing the WWR for bedrooms and windows on the northern façade resulted in reduced total annual building load.

An Evaluation for the Quantitative Thermal Performance of High Energy Efficiency Low-e Window (고효율 로이유리 창호의 정량적 단열성능 평가)

  • Choi, Gyoung-Seok;Choi, Hyoun-Joung;Kang, Jae-Sik;Yang, Kwan-Seop;Lee, Seung-Eon
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.970-975
    • /
    • 2006
  • In the high oil prices age, intensification of energy efficiency promotion in the building sector is required. Windows are dominating large percentage whole building loads, and are regarding as the primary target of energy efficiency. The purpose of this study is to draw up a technical counterplan for the intensification of windows energy efficiency and spread promotion by quantitative thermal performance with KS test method for a comparison between the general Pair glass windows and the Low-e pair glass windows.

  • PDF

A Study on the Optimal Window Floor Ratio Acording to Transmitance of Dye Sensitized Solar Cell(DSSC) by Analysis of Daylighting perfomance and Glare Index of Transmitance (염료감응태양전지의 투과율에 따른 채광성능 및 현휘지수 분석을 통한 적정창면적비에 대한 연구)

  • Oh, Myung-Hwan;Sim, Se-Ra;Lee, Chul-Sung;Chin, Kyung-Il;Yoon, Jong-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.92-97
    • /
    • 2009
  • It is more necessary to consider the various factors for developmenting visible PV module of alternative window than traditional PV module. It must have sufficient performance which is Tvis, daylighting, daylight factor, glare index. so that more needs to consider suitable plan and total evaluated technology. Under the this background. For using commonly a combination BIPV module system and Daylinghting that can alternative architectural window, our goal on this study is drawing proper window area ratio as the window by analyzing lighting performance and glare index depending on transmittance of DSSC. On this study, we drew the result about window area ratio that can apply in the building when applying DSSC in the window. In situation that window is alternated as curtain wall in atrium that has big Widow area, if applying red 15.8% DSSC of low transmittance, it is expect to proper because it is suitable illumination standard and doesn't occur a discomfort glare. In case of office, we propose to apply red 33.2% or blue 35.2% DSSC of high transmittance for no affecting lighting load. we expect to contribute to select proper and effective window when applying the window in the building by drawing the window area ratio that can apply in thee building depending on transmittance of DSSC and offering the glare index data.

  • PDF

Evaluating Performance of Energy Conservation Measures for Remodeling Educational Facilities - Focused on Deteriorated Middle School Buildings - (교육시설 리모델링을 위한 에너지 절감 요소기술의 성능 평가 - 노후 중학교 건물 중심으로 -)

  • Lhee, Sang-Choon;Choi, Young-Joon;Choi, Yool
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.105-110
    • /
    • 2012
  • Recently, all of the world are facing with a serious environmental crisis of global warming due to excessive energy consumptions. The Korean Government, taking over 97% of dependence on foreign energy, has made various efforts on reducing energy and greenhouse gas emission under the motto of "Low-Carbon Green Growth". Since the building sector takes 24% of domestic energy consumption, many design standards and regulations on saving energy in new buildings have been established. However, applications of energy saving designs and techniques on the remodeling process at deteriorated buildings including educational ones have been lack. Under a situation where the number of deteriorated schools accounts for up to 50%, this paper evaluated the performances of factors for reducing energy at deteriorated middle school buildings through an energy simulation tool on a standard school model. As a result, among factors of insulation, window's SHGC, southern louver, indoor setup temperature, and system efficiency, all other factors except window's SHGC and southern louver proved contribute to reduce energy at deteriorated middle school buildings, compared with the baseline energy consumption.

Estimation of Joint Size Distribution Using a Contained Trace Length Distribution in a Cylindrical Window (원통형 조사창에서의 양끝내포선 길이분포를 이용한 절리크기분포 추정 연구)

  • Suh, Ga Hyun;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.201-211
    • /
    • 2016
  • A method for estimating rock joint size distribution using contained traces length distribution from 3D cylindrical window survey was suggested. To reduce the numerical error, an improved technique was applied. The accuracy was verified by referring to Monte-Carlo simulation and it was found that the error can be decreased with suitable gamma values.

Self-powered Smart Window Technologies Using Photovoltaics (태양전지를 이용한 스마트 윈도우 기술 동향)

  • Lee, Kyu-Sung;Lim, Jung Wook;Kang, Mangu;Kim, Kyung Hyun;Ryu, Hojun
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.5
    • /
    • pp.36-47
    • /
    • 2019
  • Smart window technology has become a major component of smart buildings, leading to energy savings and enhanced functionality. Smart windows work like curtains or blind screens, blocking external light sources. Smart window components employ electrochromic or photochromic materials that can selectively block sunlight when electricity is applied. The installation of low-E glass and building-integrated photovoltaics (BIPV) is being encouraged in accordance with the policy on saving building energy. To incorporate BIPV into smart windows, the transparency and colors of transparent photovoltaics must be optimized. The power sources required to operate these smart windows take advantage of the transparent color of the solar cells, which also facilitates aesthetics. Self-powered smart windows that combine electrochromic or photochromic screens with transparent solar cells suggest a promising convergent technology.

Design and Evaluation of Dye-Sensitized Solar Cell Submodule for Self-Powered Smart Liquid Crystal Window (자가발전 스마트 액정 윈도우를 위한 염료감응 태양전지 서브 모듈 설계 및 평가)

  • Byeong-Yun Oh
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.494-499
    • /
    • 2024
  • The possibility of a dye-sensitized solar cell (DSSC) submodule was evaluated as an independent power source that can drive a smart liquid crystal window (SLW) that selectively blocks sunlight when electricity is applied. In order to save energy and increase the functionality of buildings, SLW operation was supplied directly from DSSC submodule, rather than connecting to the existing power system and external power sources. It was confirmed that the SLW can control light transmittance through self-generation using the DSSC submodule composed of 6 cells at low light of 2,500 lux. These results imply that there is a high possibility of combining smart windows and DSSCs suitable for window-type building-integrated photovoltaic (BIPV) systems. DSSCs, which can self-generate power in low light, are expected to increase their usability in urban BIPV systems through combination with smart window technology.

A study of the Electron Beam Irradiator for Core-loss reduction of Grain-oriented silicon Steel

  • Kim Min;Yoon Jeong-Phil;Lee Gi-Je;Cha In-Su;Cho Sung-Oh;Lee Byeong-Cheol;Jeong Young-Uk;Yoo Jae-Gwon;Lee Jong-Min
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.93-97
    • /
    • 2001
  • A new compact, low-energy electron beam irradiator has been developed. The core-loss of silicon steels can be reduced by magnetic-domain refinement method. The irradiator was developed for the application of core-loss reduction using the method. The beam energy of the irradiator can be varied from 35 to 80 keV and the maximum current is 3mA. The irradiation area is designed to be $30\times30mm2$ now and will be upgraded to $30\times150mm2$ using a scanning magnet and scanning cone. The electron beam generated from 3 mm diameter LaB6 is extracted to the air for the irradiation of the silicon steels in the air. A special irradiation port was developed for this low-energy irradiator. A havar foil with $4.08{\mu}m$ thickness were used for the window and a cold air-cooling system keeps the foil structure by removing heat at the window. The irradiator system and its operation characteristics will be discussed.

  • PDF

An Evaluation of Application Possibility of Window System in the Building based on Optical Characteristics Analysis of DSSC (염료감응태양전지의 광학특성분석을 통한 건축창호 적용가능성 평가 연구)

  • Sim, Se-Ra;Yoon, Jong-Ho;Jeong, Seon-Yeong;Baek, Nam-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.109-115
    • /
    • 2011
  • It can gain both the electric energy production and disperse of light at the same time if DSSC is applied in the building as window system. It means to help facade design and to be used in lighting, heating, cooling energy directly by applicating DSSC BIPV window that is possible to daylighting and materialization of color. For this, optical characteristics analysis that is basic step must take precedence. So, basic databases of DSSC are builded and optical performances according to the double and triple glazing are evaluated by analyzing spectral data of various colored DSSC. As a result, Green(4) has the highest visible transmittance that is 28.8%, and Blue(3) has the lowest that is 0.3%. And, in case of optical performance of Green(4) depending on the incidence angle, SHGC and Tsol are decreased sharply from more than $60^{\circ}C$. Finally, It is judged that Red(4), Green(1), (4), Blue(4) are suitable for application in office building because visible transmittance is high and solar heat gain coefficient is low relatively in spite of composing to double and triple glazing.

A Study on the Thermal Bridge Reduced Stiffeners for the Reduction of Window Overall Hear Transfer Coefficient (창문 열관류율 저감을 위한 열교 저감형 보강재 연구)

  • Jang, Hyok-Soo;Kim, Young-Il;Chung, Kwang-Seop
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.71-80
    • /
    • 2015
  • Steel stiffener is required for reinforcing the structure of the window frame made of versatile but weak PVC material. Steel stiffener however becomes a source of greater heat loss and frequently plays a role of thermal bridge due to its high thermal conductivity. To maintain thermal resistance similar to PVC frame, steel stiffener is perforated to reduce the effective heat transfer area. To compensate the structural strength of the steel stiffener which is weakened by the perforation, the thickness is increased. Increase in thickness will also increase the thermal heat resistance. Five samples which are PVC frame, PVC frame + original steel stiffener, PVC frame + 30% perforated steel stiffener, PVC frame + 50% perforated steel stiffener, PVC frame + 65% perforated steel stiffener are modeled and simulated for 2nd moment of area and thermal resistance. Therm/window version 6.3 is used for thermal analysis. The results show that among the five samples analyzed, PVC frame + 65% perforated steel stiffener best satisfies both structural strength and thermal resistance.