• 제목/요약/키워드: Energy Transducer

검색결과 192건 처리시간 0.02초

초음파 수술기의 수술 효율성 향상을 위한 진동자 임피던스 측정에 따른 조직 분류 연구 (Classification of Organs Using Impedance of Ultrasonic Surgical Knife to improve Surgical Efficiency)

  • 김홍래;김성천;김광기;김영우
    • 대한의용생체공학회:의공학회지
    • /
    • 제34권3호
    • /
    • pp.141-147
    • /
    • 2013
  • Ultrasonic shears is currently in wide use as an energy device for minimal invasive surgery. There is an advantage of minimizing the carbonization behavior of the tissue due to the vibrational energy transfer system of the transducer by applying a piezoelectric ceramic. However, the vibrational energy transfer system has a pitfall in energy consumption. When the movement of the forceps is interrupted by the tissue, the horn which transfers the vibrational energy of the transducer will be affected. A study was performed to recognize different tissues by measuring the impedance of the transducer of the ultrasonic shears in order to find the factor of energy consumption according to the tissue. In the first stage of the study, the voltage and current of the transducer connecting portion were measured, along with the phase changes. Subsequently, in the second stage, the impedance of the transducer was directly measured. In the final stage, using the handpiece, we grasped the tissue and observed the impedance differences appeared in the transducer To verify the proposed tissue distinguishing method, we used the handpiece to apply a force between 5N and 10N to pork while increasing the value of the impedance of the transducer from 400 ${\Omega}$.. It was found that fat and skin tissue, tendon, liver and protein all have different impedance values of 420 ${\Omega}$, 490 ${\Omega}$, 530 ${\Omega}$, and 580 ${\Omega}$, respectively. Thus, the impedance value can be used to distinguish the type of tissues grasped by the forceps. In the future study, this relationship will be used to improve the energy efficiency of ultrasonic shears.

유압 브레이커의 타격 에너지 측정을 위한 유압 변환장치 개발 (Development of the Hydraulic Pressure Transducer System for Testing the Impact Energy of Hydraulic Breaker)

  • 이근호;이용범;정동수
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.154-160
    • /
    • 2004
  • Hydraulic breaker of excavator has been used for the destruction and disassembling of buildings, crashing road pavement, breaking rocks at quaky and etc. The performance of breakers is evaluated their own destructive force and the number of impact by input hydraulic flow rate and pressure on the operating conditions. Because hydraulic breakers generate high impact energy, the accurate measurement of the impact force has been facing a technical challenge. In this study, the hydraulic pressure transducer system was developed based on the characteristics of pressure variation in closed vessel fur testing the impact energy. The hydraulic pressure transducer system is consisted with a hydraulic cylinder, main base, pressure & temperature sensors, LVDT, data acquisition system and etc. The developed hydraulic pressure transducer system was applied to measure the impact energy for hydraulic breaker. The measured impact force was 438.8 kgf.m within the designed impact force bounds. The developed hydraulic pressure transducer system as a simple tester could be applied to measure the impact force and the number of impact.

구조물의 운동 에너지 원리에 의한 감지기의 최적 위치 (Optimal Transducer Placement Based on Kinetic Energy of the Structural System)

  • 황충열;허광희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제1권2호
    • /
    • pp.87-94
    • /
    • 1997
  • This research aims to develop an algorithm of optimal transducer placement using Kinetic Energy of the structural system. The structural vibration response-based health monitoring is considered one of the best for the system which requires a long-term, continuous monitoring. In its experimental modal testing, however, it is difficult to decide on the measurement locations and their number, especially for complex structures, which have a major influence on the quality of the results. In order to minimize the number of sensing operations and optimize the transducer location while maximizing the accuracy of results, this paper discusses about an optimum transducer placement criterion suitable for the identification of structural damage. As a criterion algorithm, it proposes the Kinetic Energy Optimization Technique (EOT), and then addresses the numerical issues which are subsequently applicable to actual experiment where a bridge model is used. By using the experimental data, it compares the EOT with the EIM (Effective Independence Method) which is generally used to optimize the transducer placement for the damage identification and control purposes. The comparison conclusively shows that the EOT algorithm proposed in this paper is preferable when a structure is to be instrumented with fewer sensors.

  • PDF

Development of an Impedance Matching Layer in an Ultrasound Transducer with Gradient Properties

  • Jeong, Jihoon
    • 센서학회지
    • /
    • 제27권6호
    • /
    • pp.374-379
    • /
    • 2018
  • The piezocomposite transducer is widely used because it is highly efficient in transforming electric energy into mechanical energy, and its frequency range is broader than that of other types of ultrasound transducers. A general piezocomposite transducer is composed of an acoustic lens, impedance matching layers, piezoelectric materials, and backing layers. When an input voltage is applied to a piezoelectric material as an active material, it generates sound waves while vibrating. At that time, an impedance matching layer helps the sound waves to propagate forward while reducing the impedance mismatch that may occur at the interface between the active material and its front material. The impedance mismatch has a negative effect on the signal of an ultrasound transducer; thus, it is important to design a matching layer to overcome the issue. In this study, an optimized feature of a matching layer with gradient properties is studied. An objective function is defined to minimize both the average and the deviation of the reflection coefficients that are functions of the frequencies. As a result, an improvement in the signal characteristics with respect to the sensitivity and bandwidth is reported.

Analytical Models to Predict Power Harvesting with Piezoelectric Transducer

  • Muppala, Raghava Raju;Raju, K. Padma;Moon, Nam-Mee;Jung, Baek-Ho
    • Journal of electromagnetic engineering and science
    • /
    • 제8권1호
    • /
    • pp.6-11
    • /
    • 2008
  • Advances in low power design open the possibility to harvest energy from the environment to power electronic circuits. Electrical energy can be harvested from piezoelectric transducer. Piezoelectric materials can be used as mechanisms to transfer mechanical energy usually vibrating system into electrical energy that can be stored and used to power other devices. Micro- to milli-watts power can be generated from vibrating system. We developed definitive and analytical models to predict the power generated from a cantilever beam attached with piezoelectric transducer. Analytical models are pin-force method, enhanced pin-force method and Euler-Bernoulli method. Harmonic oscillations and random noise will be the two different forcing functions used to drive each system. It has been selected the best model for generating electric power based upon the analytical results obtained.

대형 구조물의 상설 감지를 위한 감지기의 최적 위치 (Optimal Transducer Placement for Health Monitoring of Large Structural System)

  • 황충열;허광희
    • 전산구조공학
    • /
    • 제10권3호
    • /
    • pp.157-165
    • /
    • 1997
  • 이 연구의 목적은 대형 구조물의 상설 감지를 위한 감지기의 최적 위치의 알고리즘을 개발하는데에 있다. 구조물의 진동을 이용한 감지 시스템은 장기적으로 계속해서 구조물을 자동으로 감지하는데에 좋은 방법중의 하나이다. 하지만 구조물의 진동을 정확히 계측하기 위해서는 감지기의 위치나 감지기의 숫자에 큰 영향을 받는데, 이와 같은 일은 대형 구조물에 있어서 쉽지가 않다. 최적의 감지기 위치와 최소의 감지기로 가장 정확한 데이터를 획득하기 위하여 최적합한 감지기의 위치를 위한 알고리즘이 개발되어 수치적 그리고 실험적으로 유용성을 보인다. EOT가 개발되어 모형 교량에 적용하여 EIM과 비교 분석된다. 이들의 비교를 통하여, 이 연구에서 제안되어진 EOT가 적은 수의 감지기로 좋은 결과를 보여, 상설감지의 목적에 적합함을 보여준다.

  • PDF

음향화학 반응용 강력초음파 개발 (Development of a High-power Ultrasonic System for Sonochemistry Reaction)

  • 이양래;김현세;백민혁
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.142-148
    • /
    • 2013
  • High-power ultrasonic promotes a chemical reaction by its own energy, thus it has been used for sonochemistry applications. For example, it has been mostly used for mixing, reaction catalyst, dispersion and disintegration. High-power ultrasonic transducer is made with structure based on a Bolt-clamped Langevin type Transducer (BLT), But it has difficulty in the development because degradation of piezoelectric ceramic by the heat generation of BLT. In this study, for a development of the transducer of 25 kHz and 1000 W used in sonochemistry and industrial cleaning, BLT with a hole in its center and tubular type waveguide of the transducer were designed based on finite element method (FEM). The transducer was fabricated based on the design parameter, and the impedance characteristics are measured experimentally and compared with the numerical results.

A High-sensitivity Passive Magnetic Transducer Based on PZT Plates and a Fe-Ni Fork Substrate

  • Li, Ping;Wen, Yumei;Jia, Chaobo;Li, Xinshen
    • Journal of Magnetics
    • /
    • 제16권3호
    • /
    • pp.271-275
    • /
    • 2011
  • This paper proposes a magnetoelectric (ME) composite transducer structure consisting of a magnetostrictive H-type Fe-Ni fork substrate and piezoelectric PZT plates. The fork composite structure has a higher ME voltage coefficient compared to other ME composite structures due to the higher quality (Q) factor. The ME sensitivity of the fork structure reaches 12 V/Oe (i.e., 150 V/cm Oe). The fork composite with two PZT plates electrically connected in series exhibits over 5 times higher ME voltage coefficient than the output of the rectangle structure in the same size. The experiment shows the composite of a Fe-Ni fork substrate and PZT plates has a significantly enhanced ME voltage coefficient and a higher ME sensitivity relative to the prior sandwiched composite laminates. By the use of a lock-in amplifier with 10 nV resolution, this transducer can detect a weak magnetic field of less than $10^{-12}$ T. This transducer can also be designed for a magnetoelectric energy harvester due to its passive high-efficiency ME energy conversion.

비틀림 변환기용 압전 원판의 진동 해석 (Vibration Analysis of a Piezoelectric Disc for a Torsional Transducer)

  • 이정현;김진오
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.911-914
    • /
    • 2005
  • The vibrational characteristics of the piezoelectric disc for a torsional vibration transducer is theoretically studied in this paper. The characteristic equation of the piezoelectric annular disc has been derived from Newton's End law and Gibb's free energy equations. With an anisotropic material property of the disc, the characteristic equation has yielded resonance frequencies. Numerically-calculated results were compared with the values obtained by finite element analysis and experiments

  • PDF

초저주파를 검출하는 변환기의 개발에 대한 연구 (A study on the Development of Transducer Detecting Infrasonic)

  • 이성백;김재환;강영창;이준웅
    • 한국통신학회논문지
    • /
    • 제6권1호
    • /
    • pp.45-50
    • /
    • 1981
  • 초 저주파 변환기를 Polytetrafluoroethylene(PTFE) Film인 고체 유전재료로 만들었다. 그 실험 결과 응답은 0.1Hz에서 7,000Hz까지 $\pm$1.5dB이내이고 감도는 -60dB로 거의 일정하다. -3dB점은 0.1Hz가 되어 (상대측정) 매우 우수한 저주파 특성을 얻을 수 있었다. 상온에서 이 소자의 시정수는 60년 이상이고 활성화 에너지는 343K에서 1.1eV를 얻었다. 이 소자는 고감도 음향 통신계통이나, 지진탐사등에 이용될 수 있음이 예상된다.

  • PDF