• 제목/요약/키워드: Energy Reversible

검색결과 184건 처리시간 0.025초

Electrochemical Characteristics of Synthesized Nb2O5-Li3VO4 Composites as Li Storage Materials

  • Yang, Youngmo;Seo, Hyungeun;Kim, Jae-Hun
    • Corrosion Science and Technology
    • /
    • 제20권4호
    • /
    • pp.183-188
    • /
    • 2021
  • The increasing demand for energy storage in mobile electronic devices and electric vehicles has emphasized the importance of electrochemical energy storage devices such as Li-ion batteries (LIBs) and supercapacitors. For reversible Li storage, alternative anode materials are actively being developed. In this study, we designed and fabricated an Nb2O5-Li3VO4 composite for use as an anode material in LIBs and hybrid supercapacitors. Nb2O5 powders were dissolved into a solution and the precursors were precipitated onto Li3VO4 through a simple, low-temperature hydrothermal reaction. The annealing process yielded an Nb2O5-Li3VO4 composite that was characterized by X-ray diffraction, electron microscopy, and X-ray photoelectron spectroscopy. Electrochemical tests revealed that the Nb2O5-Li3VO4 composite electrode demonstrated increased capacities of approximately 350 and 140 mAh g-1 at 0.1 and 5 C, respectively, were maintained up to 1000 cycles. The reversible capacity and rate capability of the composite electrode were enhanced compared to those of pure Nb2O5-based electrodes. These results can be attributed to the microstructure design of the synthesized composite material.

High Performance Wearable/Flexible Energy Storage Devices Based on Ultrathin $Ni(OH)_2$ Coated ZnO Nanowires

  • Shakir, Imran;Park, Jong-Jin;Kang, Dae-Joon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.597-597
    • /
    • 2012
  • A simple solution-based method is developed to deposit crystalline ultrathin (2 nm) nickel hydroxide on vertically grown ZnO nanowires to achieve high specific capacitance and long-term life for flexible and wearable energy storage devices. Ultrathin crystalline $Ni(OH)_2$ enables fast and reversible redox reaction to improve the specific capacitance by utilizing maximum number of active sites for the redox reaction while vertically grown ZnO nanowires on wearable textile fiber effectively transport electrolytes and shorten the ion diffusion path. Under the highly flexible state $Ni(OH)_2$ coated ZnO nanowires electrode shows a high specific capacitance of 2150 F/g (based on pristine $Ni(OH)_2$ in 1 M LiOH aqueous solution with negligible decrease in specific capacitance after 1000 cycles. The synthesized energy-storage electrodes are easy-to-assemble which can provide unprecedented design ingenuity for a variety of wearable and flexible electronic devices.

  • PDF

제올라이트를 이용한 화학축열에 대한 실험적 연구 (Experimental Study on Zeolite 13x for Thermochemical Heat Storage)

  • 하승호;박정훈;이수헌;김광호
    • 설비공학논문집
    • /
    • 제29권8호
    • /
    • pp.429-436
    • /
    • 2017
  • There are three main methods to store heat energy; sensible heat storage, latent heat storage, and thermochemical heat storage. Thermochemical heat storage has the highest storage density among the three methods, so this study focused on the thermochemical heat storage method. Experiments were conducted in this study with Zeolite 13x as thermochemical material in a large-scale reactor with 8 kg of Zeolite 13x. Experiments analyzed storage density of Zeolite 13x with respect to four different heating temperatures ($50^{\circ}C$, $100^{\circ}C$, $150^{\circ}C$, $200^{\circ}C$) in heat storage process. As a result, they showed 40~50 percent of storage efficiency in the experiment. Experiments also revealed that reactions between Zeolite 13x and water vapor were reversible and stable, but efficiency of the system was low, compared with sensible heat storage systems or latent heat storage systems.

Three-Port Converters with a Flexible Power Flow for Integrating PV and Energy Storage into a DC Bus

  • Cheng, Tian;Lu, Dylan Dah-Chuan
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1433-1444
    • /
    • 2017
  • A family of non-isolated DC-DC three-port converters (TPCs) that allows for a more flexible power flow among a renewable energy source, an energy storage device and a current-reversible DC bus is introduced. Most of the reported non-isolated topologies in this area consider only a power consuming load. However, for applications such as hybrid-electric vehicle braking systems and DC microgrids, the load power generating capability should also be considered. The proposed three-port family consists of one unidirectional port and two bi-directional ports. Hence, they are well-suited for photovoltaic (PV)-battery-DC bus systems from the power flow viewpoint. Three-port converters are derived by combining different commonly known power converters in an integrated manner while considering the voltage polarity, voltage levels among the ports and the overall voltage conversion ratio. The derived converter topologies are able to allow for seven different modes of operation among the sources and load. A three-port converter which integrates a boost converter with a buck converter is used as a design example. Extensions of these topologies by combining the soft-switching technique with the proposed design example are also presented. Experiment results are given to verify the proposed three-port converter family and its analysis.

Ionio conductivity of solid solution ceramics in the system of $CaO-Y_{2}O_{3}-ZrO_{2}$ Prepared by SHS

  • Soh, Deawha;Korobova, N.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.211-214
    • /
    • 2001
  • The undesirable phase transformation of zirconium dioxide at high temperatures can be eliminated by stabilization of the cubic phase with an addition of a selected alkaline earth or rare-earth oxide. In this paper the ionic conductivity of cubic solid solutions in the stabilized ZrO$_2$ by CaO-Y$_2$O$_3$ system was examined. The higher ionic conductivity appears to be related to lower activation energy rather than to the number of oxygen vacancies dictated by composition. Those compositions of highest conductivity lie close to the cubic-monoclinic solid-solution phase boundary. Conductivity temperature data are presented that indicate a reversible order-disorder transition for Zr$_2$2-Y$_2$O$_3$cubic solid solutions containing 20 and 25 mole % $Y_2$O$_3$.

  • PDF

3차원 장구형 고무시편의 피로수명예측 (Prediction of Fatigue Life of 3D Jang-gu Rubber Specimens)

  • 한승우;김정엽;김완두;김춘휴
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.710-715
    • /
    • 2001
  • Rubber is used extensively in many industries because of its large reversible elastic deformation, excellent damping and energy absorption characteristics, and wide availability. It becomes very important to predict the fatigue life of rubber components. But a great deal of time and cost are necessary for the fatigue test of rubber components. In this study the fatigue life of rubber components is evaluated by performing the fatigue test of a specimen and FE analysis. The fatigue life of Jang-gu type specimen which is considered as a simple rubber component is predicted and compared with experimental results. Its material is natural rubber of which hardness is 60 and used for the engine mount of commercial vehicles.

  • PDF

금속수소화물을 이용한 히트펌프의 열역학적 효율 (Thermodynamic Efficiency of Metal Hydride Heat Pump)

  • 박찬교;구기양부;수전정이양
    • 한국수소및신에너지학회논문집
    • /
    • 제3권2호
    • /
    • pp.1-7
    • /
    • 1992
  • 수소압축기를 조합한 금속수소화물 히트펌프를 설계하여 이의 성능을 평가할 수 있는 새로운 모델을 제시하고 이를 실험결과와 비교 평가 하였다. 또한 본 모델에서는 카르노사이클에 단열압축과정을 도입하여 여러 조업관수가 성능계수에 미치는 영향을 검토하고 아울러 열역학 제 2법칙에 의한 비가역과정을 도입하므로써 보다 정확한 조업특성을 파악하도록 했다.

  • PDF

Probing of Electrochemical Reactions for Battery Applications by Atomic Force Microscopy

  • 김윤석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.98.2-98.2
    • /
    • 2013
  • Electrochemical phenomena underpin a broad spectrum of energy, chemical, and information technologies such as resistive memories and secondary batteries. The optimization of functionalities in these devices requires understanding electrochemical mechanisms on the nanoscale. Even though the nanoscale electrochemical phenomena have been studied by electron microscopies, these methods are limited for analyzing dynamic electrochemical behavior and there is still lack of information on the nanoscale electrochemical mechanisms. The alternative way can be an atomic force microscopy (AFM) because AFM allows nanoscale measurements and, furthermore, electrochemical reaction can be controlled by an application of electric field through AFM tip. Here, I will summarize recent studies to probe nanoscale electrochemical reaction in battery applications by AFM. In particular, we have recently developed electromechanical based AFM techniques for exploring reversible and irreversible electrochemical phenomena on the nanoscale. The present work suggests new strategies to explore fundamental electrochemical mechanisms using the AFM approach and eventually will provide a powerful paradigm for probing spatially resolved electrochemical information for energy applications.

  • PDF

고분자전해질 연료전지에서 전기화학반응 열생성에 의한 열전달특성 (Heat transport characteristics by heat generation of electrochemical reactions in proton exchange membrane fuel cell)

  • 조선아;이필형;한상석;황상순
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3377-3382
    • /
    • 2007
  • In proton exchange membrane fuel cell, the heat is generated at the catalyst layer as result of exothermic electrochemical reaction. This heat increases temperature of gas diffusion layer and membrane whose conductivity is very sensitive to humidity, function of temperature. So it is very important to analysis heat transfer through fuel cell to maintain temperature at specified range. In this paper numerical simulation was done including reversible, irreversible, ionic resistance, water formation loss to source term of energy equation. Results show that irreversible and water formation loss contributes mainly to energy source term and as current density increases, all of energy source terms become increased and Nusselt number is increased as results of more heat generation. Particularly irreversible loss is found to be predominant among the all energy source and water formation at cathode channel influences the temperature distribution of fuel cell greatly.

  • PDF

Overexpression, Purification, and Preliminary X-ray Crystallographic Analysis of Human Brain-Type Creatine Kinase

  • Bong, Seung-Min;Moon, Jin-Ho;Jang, Eun-Hyuk;Lee, Ki-Seog;Chi, Young-Min
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.295-298
    • /
    • 2008
  • Creatine kinase (CK; E.C. 2.7.3.2) is an important enzyme that catalyzes the reversible transfer of a phosphoryl group from ATP to creatine in energy homeostasis. The brain-type cytosolic isoform of creatine kinase (BB-CK), which is found mainly in the brain and retina, is a key enzyme in brain energy metabolism, because high-energy phosphates are transfered through the creatine kinase/phosphocreatine shuttle system. The recombinant human BB-CK protein was overexpressed as a soluble form in Escherichia coli and crystallized at $22^{\circ}C$ using PEG 4000 as a precipitant. Native X-ray diffraction data were collected to $2.2{\AA}$ resolution using synchrotron radiation. The crystals belonged to the tetragonal space group $P4_32_12$, with cell parameters of a=b=97.963, $c=164.312{\AA},\;and\;{\alpha}={\beta}={\gamma}=90^{\circ}$. The asymmetric unit contained two molecules of CK, giving a crystal volume per protein mass $(V_m)$ of $1.80{\AA}^3\;Da^{-1}$ and a solvent content of 31.6%.