• Title/Summary/Keyword: Energy Reversible

Search Result 180, Processing Time 0.038 seconds

Reconstruction of Thermodynamics by the Concept of Available Energy (II) - Thermodynamics of Real World - (가용 에너지에 의한 열역학의 재구성 (II) - 실제세계 열역학 -)

  • Jung, Pyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1573-1581
    • /
    • 2004
  • Thermodynamic principles are described with a new point of view. In present study, the interaction between two systems is focused instead of the behavior of a system in conventional thermodynamics. The state change of a system cannot occur by itself but it is the result of the interaction between systems. However, the interaction itself is also the result of another kind of interaction, the interaction between two interactions. To reconstruct thermodynamics with such a point of view, the reversible world is imagined, in which conservations and measurements are discussed. There exists a conserved quantity for each mode of reversible interaction. The conserved transferring quantity in the interaction between interactions is the effective work, which is supposed to be measurable and conserved in reversible world. Effective work is the primary concepts of energy. It is the key factor to explain measurements, energy conservation and energy dissipation. The concepts developed in reversible world are applied to the real world in which irreversible phenomena may occur. Irreversibility is the result of effective energy dissipation, in which effective work irreversibly changes into entropy. A quantitative relation between the disappearing effective work and the generated entropy is dissipation equation which is given by experiments. A special temperature scale to give a very simple type of the dissipation equation is the absolute temperature scale, which gives the conventional conservation of energy.

Availability of Energy and Reconstruction of Thermodynamics(I) Thermodydamics of the Reversible World (에너지의 가용성과 열역학의 재구성 (I) 가역세계 열역학)

  • 정평석;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1227-1236
    • /
    • 1993
  • In conventional thermodynamics, energy is regarded as a physical quantity transferring from one system to another, but in present study, the real energy is regarded as a physical quantity coming out from one interaction and absorbing into another interaction between two systems. To reconstruct thermodynamics with such a point of view, available work is distinguished from half work in conventional work concepts, and a special space named reversible world is proposed in which every process is reversible and the only measurable quantity is available work and just the equality between the intensities of two systems can be verified. As results, thermodynamic laws are arranged into two principles in the reversible world-conservations of energy elements and conservation of available energy. It means the exsistences of state properties corresponding to transferring energy elements and the available work. The former are extensive properties and the later is named potential work which is a property of the composite system and a kind of mathematical distance. The conventional available energy (exergy) and internal energy can be explained as the special cases of potential work, and the conventional first law of thermodynamics can be derived from the principle of the conservation of available energy. With these new concepts, the description of thermodynamic processes is more comprehensive. The second law of thermodynamics is no longer needed in the reversible world.

Study on Reversible Electrolysis Characteristic of a Planar Type SOFC (평판형 고체산화물 연료전지의 양방향 수전해 특성 연구)

  • CHOI, YOUNGJAE;AHN, JINSOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.657-662
    • /
    • 2017
  • This paper presents the reversible electrolysis characteristics of a solid oxide fuel cell (SOFC) using a $10{\times}10cm^2$ anode supported planar cell with an active area of $81cm^2$. In this work, current-voltage characteristic test and reversible electrolysis cycle test were carried out sequentially for 2,114 hours at a furnace temperature of $700^{\circ}C$. The current-voltage characteristics for reversible electrolysis mode was measured at a current of ${\pm}26.7A$ under various $H_2O$ utilization conditions. The reversible electrolysis cycle was performed 50 times at a current of ${\pm}32.4A$. As a result, The performance degradation of SOEC mode was larger than that of SOFC mode.

Reversible Watermarking with Adaptive Embedding Threshold Matrix

  • Gao, Guangyong;Shi, Yun-Qing;Sun, Xingming;Zhou, Caixue;Cui, Zongmin;Xu, Liya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4603-4624
    • /
    • 2016
  • In this paper, a new reversible watermarking algorithm with adaptive embedding threshold matrix is proposed. Firstly, to avoid the overflow and underflow, two flexible thresholds, TL and TR, are applied to preprocess the image histogram with least histogram shift cost. Secondly, for achieving an optimal or near optimal tradeoff between the embedding capacity and imperceptibility, the embedding threshold matrix, composed of the embedding thresholds of all blocks, is determined adaptively by the combination between the composite chaos and the average energy of Integer Wavelet Transform (IWT) block. As a non-liner system with good randomness, the composite chaos is suitable to search the optimal embedding thresholds. Meanwhile, the average energy of IWT block is calculated to adjust the block embedding capacity, and more data are embedded into those IWT blocks with larger average energy. The experimental results demonstrate that compared with the state-of-the-art reversible watermarking schemes, the proposed scheme has better performance for the tradeoff between the embedding capacity and imperceptibility.

Characteristics of Energy Dissipation in Vibration Absorbing Nano-Damper According to the Architecture of Silica Particle (세라믹 분말의 입자구조에 따른 나노 진동 흡수장치의 에너지 소산 효율 특성에 대한 연구)

  • Moon, Byung-Young;Kim, Heung-Seob
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.144-149
    • /
    • 2003
  • This study shows an experimental investigation of a reversible nano colloidal damper, which is statically loaded. The porous matrix is composed from silica gel (labyrinth or central-cavity architecture), coated by organo-silicones substances, in order to achieve a hydrophobic surface. Water is considered as associated lyophobic liquid. Reversible colloidal damper static test rig and the measuring technique of the static hysteresis are described. Influence of the pore and particle diameters, particle architecture and length of the grafted molecule upon the reversible colloidal damper hysteresis is investigated, for distinctive types and mixtures of porous matrices. Variation of the reversible colloidal damper dissipated energy and efficiency with temperature, pressure, is illustrated. As a result, he proposed nano damper is effective one, which can be replaced the conventional damper.

Numerical Study of Bubble Growth and Reversible Flow in Parallel Microchannels (병렬 미세관에서의 기포성장 및 역류현상에 관한 수치적 연구)

  • Lee, Woo-Rim;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.125-132
    • /
    • 2008
  • The bubble dynamics and heat transfer associated with nucleate boiling in parallel microchannels is studied numerically by solving the equations governing conservation of mass, momentum and energy in the liquid and vapor phases. The liquid-vapor interface is tracked by a level set method which is modified to include the effects of phase change at the interface and contact angle at the wall. Also, the reversible flow observed during flow boiling in parallel microchannels has been investigated. Based on the numerical results, the effects of contact angle, wall superheat and the number of channels on the bubble growth and reversible flow are quantified.

A Study on the Information Reversibility of Quantum Logic Circuits (양자 논리회로의 정보 가역성에 대한 고찰)

  • Park, Dong-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.189-194
    • /
    • 2017
  • The reversibility of a quantum logic circuit can be realized when two reversible conditions of information reversible and energy reversible circuits are satisfied. In this paper, we have modeled the computation cycle required to recover the information reversibility from the multivalued quantum logic to the original state. For modeling, we used a function embedding method that uses a unitary switch as an arithmetic exponentiation switch. In the quantum logic circuit, if the adjoint gate pair is symmetric, the unitary switch function shows the balance function characteristic, and it takes 1 cycle operation to recover the original information reversibility. Conversely, if it is an asymmetric structure, it takes two cycle operations by the constant function. In this paper, we show that the problem of 2-cycle restoration according to the asymmetric structure when the hybrid MCT gate is realized with the ternary M-S gate can be solved by equivalent conversion of the asymmetric gate to the gate of the symmetric structure.

Characteristics of Energy Dissipation in Nano Shock Suspension System Using Silica Gel (세라믹 분말을 이용한 나노 충격 완화 장치의 에너지 소산 효율 특성에 대한 연구)

  • 문병영;정성원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.17-22
    • /
    • 2003
  • This paper presents an experimental investigation of a reversible colloidal seismic damper, which is statically loaded, The porous matrix is composed from silica gel (labyrinth or central-cavity architecture), coated by organo-silicones substances, in order to achieve a hydrophobic surface. Water is considered as associated lyophobic liquid. Reversible colloidal damper static test rig and the measuring technique of the static hysteresis are described. Influence of the pare and particle diameters, particle architecture and length of the grafted molecule upon the reversible colloidal damper hysteresis is investigated, for distinctive types and mixtures of porous matrices, Variation of the reversible colloidal damper dissipated energy and efficiency with temperature, pressure, is illustrated.

Nondestructive Characterization for Remanent Life of Advanced Ferritic Steel by Reversible Permeability (가역투자율에 의한 첨단 페라이트강의 잔여수명에 대한 비파괴평가)

  • Hong, Seung-Pyo;Ryu, Kwon-Sang;Kim, Chung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.181-186
    • /
    • 2013
  • We present nondestructive characterization for remanent life of advanced ferritic steels, next-gen energy facility materials by reversible permeability. The reversible permeability is based on the theory that the value of reversible permeability is the same differential of the hysteresis loop. The measurement principle is based on the foundation of harmonics voltage induced in a sensing coil using a lock-in amplifier tuned to the frequency of the exciting one. The peak interval of reversible permeability(PIRP), Vickers hardness, and tensile strength(TS) of the aged samples decreased with aging time. We could estimate the remanent life of advanced ferritic steel by using the relationship between the peak interval of reversible permeability and Larson-Miller parameter(LMP), non-destructively.

A Study on the Heat-Storage/-Release Characteristics of a Regenerative Heat Exchanger Utilizing the Reversible Thermochemical Reaction of $Ca(OH)_2/CaO$ ($Ca(OH)_2/CaO$ 계의 가역 열화학 반응열을 이용한 축열식 열교환기의 축열 및 방열특성에 관한 연구)

  • Lee, Soo-Kag;Kim, Hong-Jea;Lee, Jin-Kook
    • Solar Energy
    • /
    • v.9 no.2
    • /
    • pp.22-30
    • /
    • 1989
  • Since the energy storage method by means of the thermochemical reaction has no heat loss by separating the reactants under the storage period, it is remarked as one of promising means particularly for long-term heat storage. In this study, the heat-storage/-release characteristics of the reversible chemical reaction cycle, $Ca(OH)_2/CaO$, is numerically analysed by a mathematical modelling. As a result, the effectiveness of the heat exchanger by the chemical heat storage method is considerably higher than that by the sensible heat storage method. It is found that the major parameters, which determines the effectiveness of the heat exchanger, are the mass flow rate and inlet temperature of fluid, the residence time, etc.. The heat-storage/-release period can be controlled by changing the operation conditions. It is expected that the results obtained here will supply useful informations in designing a regenerative heat exchanger utilizing the thermochemical reaction.

  • PDF