• Title/Summary/Keyword: Energy Recovery Efficiency

Search Result 435, Processing Time 0.025 seconds

A Study on The Performance of a Heat Recovery Ventilator According to the Properties of Spacers (스페이서의 재질변화에 따른 전열교환기 성능변화에 관한 연구)

  • Lim, Tae-Kun;Jeon, Byung-Heon;Kim, Jong-Won;Jung, Sung-Hak;Lee, Seung-Kap;Ahn, Young-Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.3
    • /
    • pp.224-229
    • /
    • 2012
  • The importance of ventilation system is being emphasized by interest of indoor air quality. Especially, heat recovery ventilation system has attracted attention as most effective ventilation plan. Because it can reduce hazardous construction materials, indoor air pollutions, and also can reduce air conditioning energy cost. In heat recovery ventilator, the element core is the most important part. The element core is composed of liner and spacer. And liner and spacer are stacked alternately. On the Liner, heat and humidity transfer are made between supply and exhaust air. And spacer plays a role as a tunnel of exhaust and supply. In this study, we investigated and analyzed the efficiency of a heat recovery ventilator, when the spacer's properties are changed. As a result, difference spacer's properties affect an efficiency of heat recovery ventilator.

Improvement of Energy Efficiency in Wood Frame House with Energy Efficient Methods (건물 에너지 절약요소 적용을 통한 목조주택의 에너지 성능 개선)

  • Kim, Sejong;Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.77-86
    • /
    • 2013
  • This research was carried out to evaluate and raise the energy efficiency of wood frame house. The commercial solution program CE3 (Construction Energy Efficiency Evaluation) was used for simulating the energy consumption in the single-family wood frame house. The results showed that the annual heating energy demand of the house was 160 kWh per 1 $m^2$ floor area. In order to decrease the heating energy demand, the following energy efficiency methods were applied to the simulation : a) simplification of building shape, b) decrease of windows area, c) application of high performance windows (with low thermal transmittance) and d) application of heat recovery ventilator. In case of replacement of the windows with high performance one with thermal transmittance 1 $W/m^2{\cdot}K$, the lowest heating demand of 80 $kWh/m^2{\cdot}a$ was obtained. The best combination of methods, application of high performance windows and heat recovery ventilator, showed heating energy demand 34.5 $kWh/m^2{\cdot}a$.

Turbine Design for Turbo-compound System to Recover Exhaust Gas Energy Using 1-D Mean Line Flow Model (1-D Mean Line Flow Model을 이용한 엔진 배기에너지 회수를 위한 터보컴파운드 시스템용 터빈 설계)

  • Jang, Jinyoung;Yun, Jeong-Eui
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.74-81
    • /
    • 2016
  • The aim of this study was to find the initial design value of turbine blade for electrical type turbocompound system generating 10 kW. Turbocompound is one of the waste heat recovery system applying to internal combustion engine to recover exhaust gas energy that was about 30 % of total input energy. To design the turbine blade, 1-D mean line flow model was used. Exhaust gas temperature, pressure, flow rate and turbine rotating speed was fixed as primary boundary conditions. The velocity triangles was defined and used to determine the rotor inlet radius and width, the rotor outlet radius at shroud and radius at hub, the rotor flow angles and the number of blades.

Membrane-Based Carbon Dioxide Separation Process for Blue Hydrogen Production (블루수소 생산을 위한 이산화탄소 포집용 2단 분리막 공정 최적화 연구)

  • Jin Woo Park;Joonhyub Lee;Soyeon Heo;Jeong-Gu Yeo;Jaehoon Shim;Jinhyuk Yim;Chungseop Lee;Jin Kuk Kim;Jung Hyun Lee
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.344-351
    • /
    • 2023
  • The membrane separation process for carbon dioxide capture from hydrogen reformer exhaust gas has been developed. Using a commercial membrane module, a multi-stage process was developed to achieve 90% of carbon dioxide purity and 90% of recovery rate for ternary mixed gas. Even if a membrane module with being well-known properties such as material selectivity and permeability, the process performance of purity and recovery widely varies depending on the stage-cut, the pressure at feed and permeate side. In this study, we verify the limits of capture efficiency at single-stage membrane process under various operating conditions and optimized the two-stage recovery process to simultaneously achieve high purity and recovery rate.

Study of the Recycling Policy to Make Efficient Resource-recycling Society (효율적(效率的)인 자원순환사회 형성을 위한 자원재활용(資源再活用) 정책 고찰(考察))

  • Ryu, Su-Ho
    • Resources Recycling
    • /
    • v.18 no.2
    • /
    • pp.3-15
    • /
    • 2009
  • To accomplish the greenhouse gas reduction which is over core unit project of the "Green growth" policy and "Resource circulation society", it is important to maintain proper balance and complement between energy recovery from waste and material recycling. This research(study) examined the related policies on the past of korea and foreign country, and also "The 4th resource recycling master plan" and "Energy recovery from waste plan" to provide advisable direction for resource recycling policy. The results of the research(study) showed that there were no significant difference between korea and developed foreign countries waste management policies. But in German policy, energy recovery from waste and pre-treatment are importantly considered and highly required for permission. Under current circumstance in korea, recycling will be more difficult than in the past. According to "The 4th resource recycling master plan", film type of synthetic resin was not sustainable recycled material in substance."Energy recovery from waste plan", proved that the energy recovery from RDF/RPF have lower efficiency than regular incineration generation and substance recycling. To solve these problems, the energy and remainder heat recovery must be generalized to "Energy recovery" concept and institutional improvement such as LCA(Life Cycle Assessment) system are need to support it. And also technology development to extract synthetic polymer by dissolved film type of synthetic resin must be provided.

The Performance Improvement of Fuel Cell System by using LH2 Exergy (액체수소의 Exergy를 이용한 연료전지 시스템의 성능향상)

  • Park, Dong Pil;Jeong, Kwi Seong;Oh, Byeong Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.3
    • /
    • pp.211-217
    • /
    • 2001
  • From wood to coal and petroleum, mankind has used various fuel. Since using such fuel, mankind has developed power source of mechanism. We obtain numerous power from caloric force. Present energy supply is based on the fossil fuel. Fossil fuel has high energy density and is convenient for transportation and storage. Human being prepared countermeasure of energy economy, high energy efficiency and substitution energy for limits of fossil fuel. High energy efficiency among them is very important. This research will improve total output by physical exergy recovery of $LH_2$-fuel cell system.

  • PDF

Sensitivity Analysis on KS and JIS Standard for Heat Recovery Ventilator (KS, JIS 열교환 환기장치 실험규격의 민감도 분석)

  • Yee Jurng-Jae;Ihm Pyeong-Chan;Kim Hwan-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.998-1004
    • /
    • 2005
  • Recently natural ventilation rate is decreased due to the airtightness of apartment building. Therefore the use of heat recovery ventilator (HRV) has been greatly increased as an alternative method to supply fresh air and save energy in the building. In this research the experiment standard of HRV is compared between KS and JIS and the sensitivity analyses are experimented by both standards. Under cooling experiment condition indoor and outdoor wet-bulb temperature difference of JIS is 2 to 3 times higher than that of KS. It shows that the efficiency measurement of HRV by KS is expected to have greater sensitivity than by JIS and thus accurate measurement of web-bulb temperature is required. The experimental results provide that the efficiency of thermal exchange is resemblance to each others between KS and JIS. Under cooling experiment condition the efficiency of humidity exchange by KS presents higher than by JIS, however, under heating experiment condition the efficiency by KS shows lower than by JIS, reversely.

Consideration of Heat Recovery Ventilator from Ventilating Standpoint (환기관점에서 본 열교환 환기유니트)

  • Song, Jun-Won;Kang, Il-Kyung;Kim, Tae-Hee;Shin, Yong-Sup;Park, Jae-Sung;Choi, Won-Young
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.417-422
    • /
    • 2006
  • On trends of 'well-being', heat recovery ventilators(HRV) are recently installed in high rise buildings. HRV is not energy saving instrument but ventilating one. But many people have not been aware of the accurate fact. In this study, performances of HRV are tested under foreign and domestic standards. Especially air-tightness is measured three times by using gas concentration method and pressing equipment. Wet effective ventilating air volume is acquired by solving gas concentration equations. After research air-tightness and effective ventilating air volume must be more focused on than heat transfer efficiency to select the optimal HRV. Heat transfer efficiency must be adjusted by air-tightness results.

  • PDF

Stabilization technology of biogas plant applied recovery system (Recovery system 적용을 통한 바이오가스플랜트의 안정화 기술)

  • Jang, Byoungin;Jeoung, Mihwa;Cho, Yoonmi;Jo, Yongil;Park, Kyungho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.102.2-102.2
    • /
    • 2010
  • We are to evaluate the stabilization technology of actual biogas plant facilities, which is operating currently. It describes the traits of the consistent facilities of mesophilic anaerobic digestion using Unison Biogas plant Recovery system(UBR). Also the economical efficiency is examined with the electric power sales earnings and applying the deserted heating by generating electric power, which is generated by operated combined heat and power using biogas produced by mesophilic anaerobic digestion. We have generated the 481,113kw for electric power and 1,376Gcal for thermal energy simultaneously. If these electric power and thermal energy are converted into diesel, we can achieve savings equal to 114,300L, and 152,109L in the quantity of heat. Finally, if CDM, RPS, liquid fertilizer sales business, etc. is activated, the earnings will be expected to improve dramatically and is considered to contribute a drop of the greenhouse gas.

  • PDF

The Study of Hydrometallurgical Process for Recovery of Zinc from Electric Arc Furnace Dust (습식산화법을 이용한 제강분진 내 아연회수에 관한 연구)

  • Moon, Dea-Hyun;Jeung, Jae-Hoon;Chang, Soon-Woong
    • Journal of Environmental Science International
    • /
    • v.25 no.2
    • /
    • pp.331-336
    • /
    • 2016
  • In this study the optimum conditions for recovery of valuable metal in Electric Arc Furnace Dusts were investigated. 2M of $H_2SO_4$, 1~5 of solid/liquid ratio, 0~180 min of leaching time has been established for leaching condition, and for electrowinning, each of Pt, C, Zn, Pb anode and Zn, Cu cathode was compared respectively at pH 2, 4 and 6. The result of elemental analysis of Zn crystal, a lagre quantity of Fe and H has been observed with Zn and other heavy metal, therefore, impurities removing process would be requir for enhancing purity of Zn. As the result, about 60% of Zn has been recovered under condition of 2 M of $H_2SO_4$, 1:2 of S/L ratio at 120 min, and Pt or Pb for anode, Zn for cathode has been shown the highest efficiency of electrowinning at pH 6.