• Title/Summary/Keyword: Energy Recovery Efficiency

Search Result 436, Processing Time 0.028 seconds

A Novel Energy Recovery Circuit for AC PDPs with Reduced Sustain Voltage (새로운 유지구동전압 저감형 AC PDP용 에너지 회수회로)

  • Lim, Seung-Bum;Hong, Soon-Chan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.494-501
    • /
    • 2006
  • In this paper, a novel energy recovery circuit for AC PDPs(Plasma Display Panels) with reduced sustain voltage is proposed to improve the performance of conventional circuits such as TERES(TEchnology of REciprocal Sustainer). In the TERES circuit, the sustain voltage is the half of general sustaining driver for AC PDPs, however, there is no energy recovery circuit. In the proposed circuit, the efficiency is heightened by installing in energy recovery circuit and the loss of switching device is reduced by performing the zero voltage switching or zero current switching. Although the energy recovery circuit is added, the number of active switching elements of the proposed circuit is the same as that of the TERES circuit. The operations of the proposed circuit are analyzed for each mode and its validity is verified by the simulations and experimentation.

Feasibility Study on Modified OTEC (Ocean Thermal Energy Conversion) by Plant Condenser Heat Recovery (발전소 복수기 배열회수 해양온도차 발전설비 적용타당성 검토)

  • Jung, Hoon;Kim, Kyung-Yol;Heo, Gyun-Young
    • New & Renewable Energy
    • /
    • v.6 no.3
    • /
    • pp.22-29
    • /
    • 2010
  • The concept of Ocean Thermal Energy Conversion (OTEC) is simple and various types of OTEC have been proposed and tried. However the location of OTEC is limited because OTEC requires $20^{\circ}C$ of temperature difference as a minimum, so most of OTEC plants were constructed and experimented in tropical oceans. To solve this we proposed the modified OTEC which uses condenser discharged thermal energy of existing fossil or nuclear power plants. We call this system CTEC (Condenser Thermal Energy Conversion) as this system directly uses $32^{\circ}C$ partially saturated steam in condenser instead of $20{\sim}25^{\circ}C$ surface sea water as heat source. Increased temperature difference can improve thermal efficiency of Rankine cycle, but CTEC should be located near existing plant condenser and the length of cold water pipe between CTEC and deep cold sea water also increase. So friction loss also increases. Calculated result shows the change of efficiency, pumping power, net power and other parameters of modeled 7.9 MW CTEC at given condition. The calculated efficiency of CTEC is little larger than that of typical OTEC as expected. By proper location and optimization, CTEC could be considered another competitive renewable energy system.

Current Status of Waste Heat Recovery System in Cement Industry (시멘트 산업 폐열 회수 현황)

  • Young-Jin Kim;Jun-Hyung Seo;Yang-Soo Kim;Seok-Je Kwon;Kye-Hong Cho;Jin-Sang Cho
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.3-17
    • /
    • 2022
  • The cement industry, which is an energy-intensive and high carbon dioxide emission industry, requires strategy for carbon neutrality and sustainable development. Most domestic cement companies are generating electricity by waste heat recovery system to improve energy efficiency during cement processes; however, few studies exist on recycling of energy related to this. Certain countries with high cement production researched on modifying the conventional waste heat recovery system to maximize waste heat recovery using various methods such as applying the Rankine cycle depending on the temperature, comparing working fluids, applying two or more Rankine cycles, and combining with other industries. In this study, we reviewed the research direction for energy efficiency improvement by summarizing waste heat recovery and utilization methods in the domestic and overseas cement industries.

Energy Recovery Technologies for Seawater Reverse Osmosis Desalination Systems : A Review (역삼투 방식의 해수담수화 플랜트 에너지 회수 기술)

  • Kim, Yeong-Min;Lee, Won-Tae;Choi, June-Seok;Kang, Man-Gon;Lee, Sang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.573-579
    • /
    • 2011
  • As rapid advances in technologies continue, seawater reverse osmosis (SWRO) desalination systems are now more energy-efficient than conventional thermal processes. Some SWRO desalination plants can achieve the specific energy consumption (SEC) below 2 kWh/$m^3$. Along with the development of new membranes and high-performance pumps, energy recovery devices (ERD), which recover the hydraulic energy of brine, have been developed to enhance energy efficiency. In this work, we reviewed general aspects of ERD technologies and their market trends. The advantages and disadvantages of various EDR technologies were compared to explore the future directions of ERD development.

A Study on Application of a Heat Recovery Ventilator using Photovoltaic System in School (학교 교실의 태양광발전 환기시스템 적용성 연구)

  • Jang, Yong-Sung;Suh, Seung-Jik;Hong, Sung-Hee;Yu, Kwon-Jong;Park, Hyu-Soon
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.1
    • /
    • pp.27-34
    • /
    • 2005
  • This study aims to evaluate application of a heat recovery ventilator(HRV) using photovoltaic(PV) system. To this end, we analyzed performance of a PV system, which it was evaluated by monthly power wattage and conversion efficiency according to design capacity of a HRV. The results of this study can be summarized as follows. (1) A conversion efficiency of the PCS was evaluated about 86% in rated power. (2) A maximum, minimum and average output power were respectively analyzed 49.2W, 47.3W, and 48.8W. (3) Total power wattage of 200W PV system was 211kW and it was 316kW in case of 300W PV system. (4) Insufficient electrical power of a duct and window type ventilation system was respectively calculated 133.5kW and 147.7kW.

CLHS Driving Method for Reducing Reactive Power Consumption in AC PDP (AC PDP의 무효전력 감소를 위한 CLHS 구동 방법)

  • Shin, Jae-Hwa;Kim, Gun-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.577-583
    • /
    • 2011
  • In AC-PDP, it is necessary to achieve high luminance efficiency, high luminance and high definition by adopting technologies such as high xenon concentration and long gap. However, it is very difficult to apply above technologies because they make many problems such as mis-discharge and high driving voltage. Especially, the reactive power of PDP must be reduced for satisfaction in international standard IEC62087. In this paper, we proposed CLHS driving method which is half sustain driver without energy recovery capacitor. In the experimental results, CLHS driving method reduced reactive power consumption about 10%. Also, CLHS driving method improved the luminance efficiency in all discharge loads. Therefor, the more the discharge load decreases, the more the luminance efficiency improves. When the discharge load is 20%, CLHS driving method improved 5.35%.

Design and Assessments of a Closed-loop Hydraulic Energy-Regenerative System (폐루프 유압 에너지 회생 시스템에 관한 연구)

  • Hung, H.T.;Yoon, J.I.;Ahn, K.K.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.116-125
    • /
    • 2010
  • In this study, a novel hydraulic energy-regenerative system was presented from its proposal through its modeling to its control. The system was based on a closed-loop hydrostatic transmission and used a hydraulic accumulator as the energy storage system in a novel configuration to recover the kinetic energy without any reversion of the fluid flow. The displacement variation in the secondary unit was reduced, which widened the uses of several types of hydraulic pump/motors for the secondary unit. The proposed system was modeled based on its physical attributes. Simulation and experiments were performed to evaluate the validity of the employed mathematical model and the energy recovery potential of the system. The experimental results indicated that the round trip recovery efficiency varied from 22% to 59% for the test bench.

  • PDF

Study on the Heat Recovery System in Series Hybrid Electric Vehicle (직렬형 하이브리드 자동차에서의 폐열 회수에 대한 연구)

  • Jung, Daebong;Yong, Jinwoo;Kim, Minjae;Kim, Hyoungjun;Min, Kyoungdoug
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.95-95
    • /
    • 2010
  • In recent, there are tremendous requirements to improve the fuel economy of vehicle. For satisfaction of requirements, Hybrid Electric Vehicle or other technologies are suggested and implemented. However, it should be noted that almost 35% energy loss is occurred in the shape of exhaust gas as ever. For increase the efficiency of vehicle, it is certain that the exhaust gas energy should be recover, and generate energy. In previous studies, the technologies such as turbo-compound, thermoelectric and rankine cycle are suggested to recover the exhaust heat energy in vehicle. But, they focus on the conventional vehicle or parallel Hybrid Electric Vehicle. Series Hybrid Electric Vehicle has advantage that the engine and drive shaft are de-coupled. It means that the engine can be operated in high efficiency area regardless with vehicle states. Therefore, if rankine cycle is applied to series hybrid electric vehicle, operating condition of that becomes almost steady. So, in this study, theoretical analysis on the efficiency of rankine cycle applied to series hybrid electric city bus is carried and the energy recovered from exhaust gas during vehicle drive cycle is calculated.

  • PDF

An Experimental Study on Heat Transfer Performance of Fluidized Bed Heat Exchanger for Heat Recovery from Multi-Heat Sources (다중열원 열회수형 유동층 열교환기의 전열성능에 대한 실험적 연구)

  • Park, Sang-Il;Ko, Chang-Bok;Lee, Young-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.2
    • /
    • pp.57-62
    • /
    • 2017
  • The heat transfer performance of a multi-heat-source fluidized bed heat exchanger was analyzed. The fluidized bed heat exchanger examined in this study can simultaneously recover the waste heat from gas, water vapor, and hot water. The effects of waste water flow rate, gas flow rate, and cooling water flow rate were examined to find their experimental correlations with the heat transfer coefficient. A computer program using the correlations was developed in this study to predict the thermal performance of the fluidized bed heat exchanger. The calculated heat transfer rates of gas, water vapor, waste water, and cooling water were compared with the measured values. It was found that the error of the calculated values was less than 12%.