• Title/Summary/Keyword: Energy Platform

Search Result 564, Processing Time 0.03 seconds

Collection and Analysis of Electricity Consumption Data in POSTECH Campus (포스텍 캠퍼스의 전력 사용 데이터 수집 및 분석)

  • Ryu, Do-Hyeon;Kim, Kwang-Jae;Ko, YoungMyoung;Kim, Young-Jin;Song, Minseok
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.3
    • /
    • pp.617-634
    • /
    • 2022
  • Purpose: This paper introduces Pohang University of Science Technology (POSTECH) advanced metering infrastructure (AMI) and Open Innovation Big Data Center (OIBC) platform and analysis results of electricity consumption data collected via the AMI in POSTECH campus. Methods: We installed 248 sensors in seven buildings at POSTECH for the AMI and collected electricity consumption data from the buildings. To identify the amounts and trends of electricity consumption of the seven buildings, electricity consumption data collected from March to June 2019 were analyzed. In addition, this study compared the differences between the amounts and trends of electricity consumption of the seven buildings before and after the COVID-19 outbreak by using electricity consumption data collected from March to June 2019 and 2020. Results: Users can monitor, visualize, and download electricity consumption data collected via the AMI on the OIBC platform. The analysis results show that the seven buildings consume different amounts of electricity and have different consumption trends. In addition, the amounts of most buildings were significantly reduced after the COVID-19 outbreak. Conclusion: POSTECH AMI and OIBC platform can be a good reference for other universities that prepare their own microgrid. The analysis results provides a proof that POSTECH needs to establish customized strategies on reducing electricity for each building. Such results would be useful for energy-efficient operation and preparation of unusual energy consumptions due to unexpected situations like the COVID-19 pandemic.

A Study on Intelligent Bus Management System using Beacon-based BIS (비콘을 활용한 BIS 연동 지능형 버스관리 시스템 연구)

  • Nam, Kang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.47-52
    • /
    • 2017
  • This study is BIT(: Bus Information Terminal) features that take advantage of KEPCO eIoT(: energy Internet of Thing) platform, and it's Network configuration is composed of display terminal device, gateway, platform, and the service server. The key features are parts for processing protocol data between the gateway and the device using LoRa(: Long Range) technology, Intelligent applications and SIP(: Session Initiation Protocol) data handling connected to the Taxi reservation system. And the resource tree provided BIT for the service, which commonly used in the application server and the device.

Study on Smart Office Functionality Utilizing KEPCO Gateway (한전 Gateway를 활용한 Smart Office 기능 연구)

  • Nam, Kang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.11
    • /
    • pp.1107-1112
    • /
    • 2016
  • This study is the Smart Office features that take advantage of KEPCO eIoT(: energy Internet of Thing) platform, and it's Network configuration is composed of sensing device, gateway, platform, and the service server. The key features are parts for processing protocol data between the gateway and the device using LoRa(: Long Range) technology, Intelligent applications and public safety data connected to the PS-LTE(: Public Safety-Long-Term Evolution) system. And the resource tree provided Smart Office for the service, which commonly used in the application server and the device.

A Novel Approach for the Particulate Matter(PM) Reduction in the Industrial Complex using Integrated Data Platform (통합데이터 플랫폼을 활용한 산업단지 미세먼지 저감 방안)

  • Chung, Seokjin;Jung, Seok
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.62-69
    • /
    • 2020
  • Manufacturing processes in industrial complexes produce NOx, SOx, VOCs, which cause particulate matter (PM). Therefore, this study analyzed the characteristics of each industrial complex by using scattered public data, matched the existing particulate matter(PM) reduction technology, and proposed an optimized reduction plan. The application of matching technologies and facilities by industrial complexes based on data is able to mitigate NOx, SOx, and VOCs which cause particulate matter in the process in advance. This way can be an effective alternative in order to reduce PM in the manufacturing processes as well as industrial complexes.

Deep Learning-Based Smart Meter Wattage Prediction Analysis Platform

  • Jang, Seonghoon;Shin, Seung-Jung
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.173-178
    • /
    • 2020
  • As the fourth industrial revolution, in which people, objects, and information are connected as one, various fields such as smart energy, smart cities, artificial intelligence, the Internet of Things, unmanned cars, and robot industries are becoming the mainstream, drawing attention to big data. Among them, Smart Grid is a technology that maximizes energy efficiency by converging information and communication technologies into the power grid to establish a smart grid that can know electricity usage, supply volume, and power line conditions. Smart meters are equient that monitors and communicates power usage. We start with the goal of building a virtual smart grid and constructing a virtual environment in which real-time data is generated to accommodate large volumes of data that are small in capacity but regularly generated. A major role is given in creating a software/hardware architecture deployment environment suitable for the system for test operations. It is necessary to identify the advantages and disadvantages of the software according to the characteristics of the collected data and select sub-projects suitable for the purpose. The collected data was collected/loaded/processed/analyzed by the Hadoop ecosystem-based big data platform, and used to predict power demand through deep learning.

Experimental Study on an Underwater Pole Climb Robot for the Maintenance of Offshore Wind Turbine Substructures (해상풍력발전 지지구조물의 유지보수용 수중 기둥등반로봇에 관한 실험적 연구)

  • Im, Eun Cheol;Ko, Jin Hwan
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.238-244
    • /
    • 2022
  • Maintenance works of offshore wind turbines could take a longer time, which causes the reduction of their energy production efficiency, than those of onshore wind turbines owing to severe offshore environment. Subsequently, preventive maintenance measures are required to increase the production efficiency. Thus, we proposed a wheel-based Underwater Pole Climbing Robot (UPCR) platform, which was aimed at the periodic inspection and maintenance of the substructures of the offshore wind turbines, with three advantages: high speed, good mobility and low power consumption. In the proposed platform, a self-locking system using a gripper module was adopted for preventing slippery problem and a dual configuration was chosen for moving on a branched structure. As a result, the proposed robot was able to continuously climb, preserve it's position at the pole without consuming energy, and move from the pole to the other branched pole. The results of this research show that the UPCR has basic moving capabilities required for the underwater work for the substructures of the offshore wind turbines.

Resource Allocation Algorithm for Multiple RIS-Assisted UAV Networks (다중 UAV-RIS 네트워크를 위한 자원 할당 알고리즘)

  • Heejae Park;Laihyuk Park
    • Journal of Platform Technology
    • /
    • v.11 no.1
    • /
    • pp.3-10
    • /
    • 2023
  • Unmanned Aerial Vehicles (UAVs) have gained significant attention in 5G and 6G wireless networks due to their high flexibility and low hardware costs. However, UAV communication is still challenged by blockage and energy consumption issues. Reconfigurable Intelligent Surfaces (RISs) have emerged as a promising solution to these challenges, enabling improved spectral efficiency and reduced energy consumption by transmitting signals to users who cannot receive signals because of the obstacles. Many previous studies have focused on minimizing power consumption and data transmission delay through phase shift and power optimization. This paper proposes an algorithm that maximizes the sum rate by including bandwidth optimization. Simulation results demonstrate the effectiveness of the proposed algorithm.

  • PDF

Transient full core analysis of PWR with multi-scale and multi-physics approach

  • Jae Ryong Lee;Han Young Yoon;Ju Yeop Park
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.980-992
    • /
    • 2024
  • Steam line break accident (SLB) in the nuclear reactor is one of the representative Non-LOCA accidents in which thermal-hydraulics and neutron kinetics are strongly coupled each other. Thus, the multi-scale and multi-physics approach is applied in this study in order to examine a realistic safety margin. An entire reactor coolant system is modelled by system scale node, whereas sub-channel scale resolution is applied for the region of interest such as the reactor core. Fuel performance code is extended to consider full core pin-wise fuel behaviour. The MARU platform is developed for easy integration of the codes to be coupled. An initial stage of the steam line break accident is simulated on the MARU platform. As cold coolant is injected from the cold leg into the reactor pressure vessel, the power increases due to the moderator feedback. Three-dimensional coolant and fuel behaviour are qualitatively visualized for easy comprehension. Moreover, quantitative investigation is added by focusing on the enhancement of safety margin by means of comparing the minimum departure from nucleate boiling ratio (MDNBR). Three factors contributing to the increase of the MDNBR are proposed: Various geometric parameters, realistic power distribution by neutron kinetics code, Radial coolant mixing including sub-channel physics model.

Study on FOWT Structural Design Procedure in Initial Design Stage Using Frequency Domain Analysis (주파수 영역 해석을 활용한 부유식 해상풍력 플랫폼 초기 구조설계 절차 연구)

  • Ikseung Han;Yoon-Jin Ha;Kyong-Hwan Kim
    • Journal of Wind Energy
    • /
    • v.14 no.1
    • /
    • pp.29-36
    • /
    • 2023
  • The analysis of the floating offshore wind turbine platform is based on the procedures provided by the IEC including the International Classification Society, which recommends the analysis in the time domain. But time-domain simulation requires a lot of time and resources to solve tens of thousands of DLCs. This acts as a barrier in terms of floating structure development. For final verification, it requires very precise analysis in the time domain, but from an initial design point of view, a simplified verification procedure to predict the quantity of materials quickly and achieve relatively accurate results is crucial. In this study, a structural design procedure using a design wave applied in the oil and gas industries is presented combined with a conservative turbine load. With this method, a quick design spiral can be rotated, and it is possible to review FOWTs of various shapes and sizes. Consequently, a KRISO Semi-Submersible FOWT platform was developed using a simplified design procedure in frequency-domain analysis.

Numerical investigation on hydrodynamic response of a SPAR platform for offshore wind energy

  • Arya Thomas;V.K. Srineash;Manasa Ranjan Behera
    • Ocean Systems Engineering
    • /
    • v.14 no.3
    • /
    • pp.211-235
    • /
    • 2024
  • Th COP28 has emphasized the governments to speed up the transition away from fossil fuels to renewables such as wind and solar power in their next round of climate commitments. The steady and less turbulent wind over the ocean draws increased attention of governments, industries and researchers on exploring advanced technologies to extract energy from offshore wind. The present study numerically investigates the hydrodynamic behavior of a SPAR-type Floating Offshore Wind Turbine (FOWT) under various wave conditions and mooring line configurations. One of the major focuses of this study is investigating a freak wave's impact on a FOWT and determining its extreme responses. The study investigates the structural response under various wave impact for different configurations of mooring lines. The present study examines the wave-structure interaction under regular and freak wave conditions using numerical modelling approach. During the study, it is ensured that the natural frequency and wave induced motions of SPAR are inline with the experimental studies; thereby increasing the confidence in using the numerical model and domain for this investigation. The study considers the behaviour of slack and taut mooring arrangements under these wave conditions. The study observed that a taut mooring configuration can be efficient in restraining the FOWT motions, especially under a freak wave scenario. The Froude-Krylov force shows a non-linearity due to the non-uniform profile of the platform under all wave conditions. Overall, the study contributes to determining the performance of the mooring configurations under different wave conditions.