• Title/Summary/Keyword: Energy Performance verification

Search Result 296, Processing Time 0.026 seconds

The Development of Monitoring System for Performance Evaluation of Solar Hot Water Heater (태양열 온수기 성능평가 위한 모니터링 시스템 개발)

  • Kim, Jae-Yeol;Choi, Seung-Hyun;Yang, Dong-Jo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.417-417
    • /
    • 2009
  • The application of solar energy, in the field of alternative energy, was on the increase tendency. In the case of advanced nations, through continuous R&D, solar hot water heater with high efficiency has been used for the house and the industrial process on business, advanced nations were reached up the experimental stage of solar generation system. But, the actual circumstance of the domestic has been not accomplished the popularization of solar hot water heater and the settlement of it which is the fundamental stage of the solar energy usage. This trouble, the domestic was flooded with small enterprise for producing solar hot water heater, was caused by the popularization and the production without verification of performance. To supply the monitoring program for evaluating solar hot water heater, this research was purpose to improve the technical development of the enterprise for producing solar-heat hot-water-boiler and served as an aid for the enlargement and the popularization on solar energy.

  • PDF

Development of an Advanced Hybrid Energy Storage System for Hybrid Electric Vehicles

  • Lee, Baek-Haeng;Shin, Dong-Hyun;Song, Hyun-Sik;Heo, Hoon;Kim, Hee-Jun
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.51-60
    • /
    • 2009
  • Hybrid Electric Vehicles (HEVs) utilize electric power as well as a mechanical engine for propulsion; therefore the performance of HEV s can be directly influenced by the characteristics of the Energy Storage System (ESS). The ESS for HEVs generally requires high power performance, long cycle life and reliability, as well as cost effectiveness. So the Hybrid Energy Storage System (HESS), which combines different kinds of storage devices, has been considered to fulfill both performance and cost requirements. To improve operating efficiency, cycle life, and cold cranking of the HESS, an advanced dynamic control regime with which pertinent storage devices in the HESS can be selectively operated based on their status was presented. Verification tests were performed to confirm the degree of improvement in energy efficiency. In this paper, an advanced HESS with improved an Battery Management System (BMS), which has optimal switching control function based on the estimated State of Charge (SOC), has been developed and verified.

R&D of Francis Type Hydro Turbine for Domestic Production (프란시스수차의 국산화개발 연구)

  • Lee, Chull-Hyung;Park, Wan-Soon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.302-305
    • /
    • 2009
  • The Francis type hydro turbine with vertical axis has been designed and analized for hydraulic performance verification. The guide vane angle of turbine casing were designed to be varied according to the condition of head and flowrate. When the changes in flowrate and output were comparatively large, the efficiency drop were small, so the efficiency characteristics and stability of the entire operating condition were maintained in good condition. These results showed that the developed hydro turbine in this study will be suitable for small hydro power stations with medium and high head such as agricultural reservoirs and large dam.

  • PDF

Sensorless Active Damping Method for an LCL Filter in Grid-Connected Parallel Inverters for Battery Energy Storage Systems

  • Sung, Won-Yong;Ahn, Hyo Min;Ahn, Jung-Hoon;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.280-286
    • /
    • 2018
  • A sensorless active damping scheme for LCL filters in grid-connected parallel inverters for battery energy storage systems is proposed. This damping method is superior to the conventional notch filter and virtual damping methods with respect to robustness against the variation of the resonance of the filter and unnecessary additional current sensors. The theoretical analysis of the proposed damping method is explained in detail, along with the characteristic comparison to the conventional active damping methods. The performance verification of the proposed sensorless active damping method shows that its performance is comparable to that of the conventional virtual damping method, even without additional current sensors. Finally, simulation and experimental results are provided to examine the overall characteristics of the proposed method.

BIM Energy Efficiency Plan for Verification of Building Envelop Energy Code of Housing in USA - Based on the NYC Energy Conservation Code - (미국 공동주택의 건물 외피 에너지코드 검증을 위한 BIM 에너지 계획 방안 -뉴욕시 에너지 코드를 기준으로-)

  • Heo, Jinwoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.313-322
    • /
    • 2022
  • The number of architects who adopt BIM(Building Information Modeling) as the design method are gradually increasing because of its productivity and efficiency. Climate Change and Global Warming lead to legislation of new energy regulations and strengthen existing ones. The current architectural design methods (2D CAD) take a lot of time and effort to verify energy codes and are hard to adjust according to the design changes. The purpose of this study is to show the effectiveness of the BIM in building envelop energy modeling of the housing project. In the process of design method change, We could contribute to increasing productivity and efficiency in building energy verification through BIM because the updated value could be calculated simultaneously without information omission or recalculation process. The procedure for the study is as follows. Using BIM of the Goldin at Essex Crosing Housing Project by Revit 2011 as a case model, this study analyze the criteria for energy plan to conform to the energy code in NYC. The result value from the setting of the Revit model is compared with the reference value required by the NYC Energy Code. Finally, the data from BIM are entered into COMckeck, the energy verification program provided by U.S. Department of Energy, to check whether the building envelope energy performance conforms to NYC Energy Code.

Identifying, Prioritizing, Measuring and Verifying Clean Energy Solutions for Korea's Public Building Renewable Energy Obligation Policy

  • Lee, Kwang Seob;Kang, Eun Chul;DA CUNHA, Ivor Francis;Lin, Cheng-Xian;Lee, Euy Joon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.1
    • /
    • pp.11-18
    • /
    • 2016
  • Under the Renewable Heat Obligation (RHO) public buildings in the Republic of Korea larger than $10,000m^2$ must achieve an 11% overall reduction to thermal energy consumption. Well intended solutions have been proposed. However, not all option is evaluated on the same basis, potentially resulting in incomplete or sub-optimal solutions. What's more once projects are implemented, there are inconsistencies in the methods used to measure and evaluate operating performance of the post-retrofit case. The RETScreen decision tools and methodology can be used by decision makers, policy developers, architects, engineers and community leaders to evaluate and select the most effective solutions for Korea's RHO needs.

A Fuel Cell Simulator for Control Logic Verification and Operator Training (제어로직 검증 및 운전원 훈련용 연료전지 시뮬레이터)

  • Maeng, Jwayoung;Kim, Sungho;Jung, Wonhee;Kang, Seungyup;Hong, Sukkyu;Lee, Sekyoung;Yook, Simkyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.75.1-75.1
    • /
    • 2010
  • This research presents a fuel cell simulator for control logic verification and operator training. Nowadays, power industries are focusing on clean energy as a response to new policy. The fuel cell can be the solution for clean energy, but operating technology is not well developed compared to other conventional power plans because of its short history. Therefore we need a simulator to verify the new control strategy and train operators, because the price of a real fuel cell system is too high and mechanically weak to be used for these kind of purposes. To develop the simulator, a 300 KW MCFC(Molten Carbonate Fuel Cell) system was modeled with stack, BOPs(pre-reformer, steam generator, etc) and mechanical components(valves, pipes, pumps, blowers, etc). The process model was integrated to emulated control system and HMI(Human Machine Interface). A static load and open loop tests were conducted for verifying the accuracy of the process model, since it is the most important part in the simulation. After verifying the process model, an automatic load change and start-up tests were conducted to verify the performance of a new control strategy(logic and functional loops).

  • PDF

Experimental Performance Verification of Energy-Harvesting System Using the Micro-vibration of the Spaceborne Cryocooler (우주용 냉각기의 미소진동을 이용한 에너지 수확 시스템의 실험적 성능검증)

  • Jung, Hyunmo;Kwon, Seongcheol;Oh, Hyunung
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.3
    • /
    • pp.15-22
    • /
    • 2016
  • The on-board appendages of satellites with mechanical moving parts such as the fly-wheel, the control-moment gyro, the cryocooler, and the gimbal-type directional antenna can generate an undesirable micro-vibration disturbance, which is one of the main causes of the image-quality degradation that affects high-resolution observation satellites. Consequently, the isolation of the micro-vibration issue has always been considered as salient, and the micro-vibration is therefore the focus of this study wherein a complex system that can provide the dual functions of a guaranteed vibration-isolation performance and electrical energy harvesting is proposed. The vibration-isolation and energy-harvesting performances of the complex system are predicted through a numerical analysis based on the characteristics that are obtained from component-level tests. In addition, the effectiveness of the complex system that is proposed in this study is verified through an assembly-level functional-performance test.

Study on Energy Saving Possibilities through Analysis of Environment Control Elements & Natural Ventilation Performance using the CFD & Measurement (CFD와 실측을 이용한 환경제어요소 도입 및 주택 자연환기 성향 검토를 통한 에너지 절감가능성 고찰)

  • Oh, Byoungchull;Lee, Sunyoung
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.27-37
    • /
    • 2014
  • Heat island is caused by changes of land coverage structure of cities and use of energy in buildings. As a result energy use in buildings get to increase further followed by rising of GHG emission and deteriorating climate change. Eco-friendly housing complex is a kind of plan that applies environmental control elements like water and green spaces to housing complex. With these methods, it can be expected to create thermal environment of indoor and outdoor. In this paper quantitative examination is studied on using CFD to find out the effects of river, water permeable, parks and planting on thermal environment. And by comparing field measurements with CFD results which are aimed to development phase housing complex, feasibility and usability of the CFD analysis results are confirmed. And also, analysis on the ventilation performance followed by natural ventilation system is analyzed by selecting one building in housing complex. Based on the results, the possibilities of energy reduction through making thermal environment and applying natural ventilation are studied. With these outcomes, creating thermal conditions and using natural ventilation would be contributed to GHG reduction.

A study on the Insulation Performance of the Super Window applied to building energy efficiency rating (초단열 슈퍼윈도우의 건물에너지효율등급 적용 연구)

  • Jang, Cheol-Yong;Kim, Chi-Hoon;Ahn, Byung-Lip
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.205-210
    • /
    • 2009
  • Generally, the building's windows and ventilation for the purpose of mining and the vista and windows by emotional engineering design area is a growing trend. According to the flow of energy is lost from the building, will be achieved through the walls and roof and windows. Among these, the window through the loss of about 45% of the entire building is big enough to rate. In addition, the building regulation U-value Limitation of window is $3.3W/m^2$ K in southern regions, while U-value Limitation of wall is $0.35{\sim}0.58W/m^2$ K. It means that the energy loss through windows is six times more than it through wall. Therefore, the purpose of this study is to evaluate the environmental performance of the super window system by verification experiment. The results of this study are as follows; 1)Thermal performance of insulated Super Window measured as $1.44W/m^2$ $^{\circ}C$ 2)Required energy for heating was cut down about 5.3% from 266.99 $MJ/m^2$ yr to 252.85 $MJ/m^2$ yr 3)Super Window's reduction rates increased 4.1% from 31.48% to 35.58% when it is compared to normal windows. 4)Building energy efficiency rating elevated from 2nd rating to 1st rating.

  • PDF