• Title/Summary/Keyword: Energy Metabolism

Search Result 905, Processing Time 0.036 seconds

In Vivo Image and Biodistribution of $^{123}I$-15-(p-iodophenyl)-3-R, S-methylpentadecanoic acid (BMIPP) in Liposarcoma Bearing Nude Mice (지방육종형성 동물모델에서 $^{123}I$-15-(p-iodophenyl)-3-R, S-methylpentadecanoic acid (BMIPP)의 생체분포와 생체영상)

  • Lee, Tae-Sup;Suh, Yong-Sup;Choi, Chang-Woon;Woo, Kwang-Sun;Chung, Wee-Sup;Lim, Soo-Jung;Lim, Sang-Moo;Awh, Ok-Doo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.5
    • /
    • pp.324-333
    • /
    • 2001
  • Purpose: $^{123}I$-labeled fatty acids have been used in the evaluation of regional myocardial energy metabolism. This study aimed to evaluate the usefulness of $^{123}I$-BMIPP as a liposarcoma-imaging agent. Materials and Methods: We compared in vitro uptakes between liposarcoma(SW872) and glioma(9L) cell lines, and examined biodistribution and in vivo images of $^{123}I$-BMIPP in liposarcoma-bearing nude mice. Cold-BMIPP was labeled with $^{123}I\;using\;Cu^{2+}$ as catalyst. After purification by Sep-pak, radiochemical purity was determined by TLC. We compared cellular uptake between glioma and liposarcoma after incubation of 5, 10, 15, 30, 60, 120, and 180 mins with culture medium containing $^{123}I$-BMIPP. The difference in biodistribution was determined between non-feeding (water only) group for 18 hr and feeding group in normal mice (n=6/group) at 0.5, 2, and 24 hr. In liposarcoma-hearing nude mice model, liposarcoma, SW872, ceil lines were injected subcutaneously into the felt thigh of nude mice. The biodistribution of $^{123}I$-BMIPP was evaluated at 0.5, 2, and 24 hr (n:5 / group) and in vivo Image of $^{123}I$-BMIPP was obtained with gamma camera at 2 and 24 hr in liposarcoma-hearing nude mice. Results: Radiolabeling yield and radiochemical purity were 95% and above 99%, respectively. SW872 cell line showed more increased uptake than 9L with 1.5 times at 180 mins. The clearance of $^{123}I$-BMIPP in various tissues was more delayed in the non-feeding group than in the feeding group, especially at delayed time (24 hr) in normal mice, and the major excreting organ was the gastrointestinal tract. In liposarcoma-bearing nude mice, tumor/blood ratio of $^{123}I$-BMIPP was 0.94, 0.75, and 1.38 and tumor/muscle ratio was 0.66, 1.53, and 1.11 at 0.5, 2, and 24hr, respectively. $^{123}I$-BMIPP was selectively localized in liposarcoma at 24 hr image. Conclusions: These results suggest that $^{123}I$-BMIPP can be used as a liposarcoma-imaging agent.

  • PDF

Relationships between Insensible Perspiration and Thermo Physiological Factors during Wearing Seasonal Clothing Ensembles in Comfort (쾌적한 상태에서 계절별 의복을 착용하고 있는 동안 불감증설과 온열 생리 요소들 간의 관련성)

  • Lee, Joo-Young;Choi, Jeong-Wha;Park, Joon-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.12
    • /
    • pp.1700-1709
    • /
    • 2007
  • The purpose of this study was to examine the relationships between thermo-physiological factors and the insensible loss of body weight(IL) of resting women wearing seasonal comfortable clothing. Air temperature was maintained at a mean of 22.5, 24.7, and 16.8 for spring/fall, summer and winter, respectively. We selected a total of 26 clothing ensembles(8 ensembles for spring/fall, 7 ensembles for summer, and 11 ensembles for winter). The results showed that 1) IL was $19{\pm}5g{\cdot}m^{-2}{\cdot}hr$ for spring/fall environment, $21{\pm}5g{\cdot}m^{-2}{\cdot}hr$ for summer, $18{\pm}6{\cdot}m^{-2}{\cdot}hr$ for winter(p<.001). 2) Insensible water loss through respiratory passage(IWR) showed the reverse tendency to IL. IWR was $6{\pm}1g{\cdot}m^{-2}{\cdot}hr$ for winter and $5{\pm}1g{\cdot}m^{-2}{\cdot}hr$ for summer. This difference was significant(p<.001). 3) The proportion of IWR out of whole insensible water loss(IW), had a mean of the mean 28% for summer and 38% for winter(p<.001). 4) In comfort, the heat loss by IW out of heat production had a mean of 25% for spring/fall, 27% for summer, and 23% for winter. 5) There was a weak negative correlation between It and clothing insulation/body surface area covered by clothing. 6) There were significant correlations between IL and air temperature$(T_a)$, air humidity$(H_a)$, energy metabolism, ventilation, mean skin temperature $\={T}_{sk})$ and clothing microclimate humidity$(H_{clo})$. However, the coefficients were less than 0.5. In conclusion, there were weak relationships between the IL and thermo-physiological factors. However, when subjects rested in thermal comfort, the IL was maintained in a narrow range even though the clothing insulation and air temperature were diverse.

$17{\beta}$-Estradiol Regulates the Expression of Nesfatin-1/NUCB2 in Mouse Uterus ($17{\beta}$-Estradiol에 의한 생쥐 자궁 내 Nesfatin-1/NUCB2 발현 조절)

  • Kim, Jin-Hee;Lee, Kyoung-Ran;Kim, Hyeon-Kyeong;No, So-Hyeon;Yoo, Hye-Min;Moon, Chan-Il;Yang, Hyun-Won
    • Development and Reproduction
    • /
    • v.15 no.4
    • /
    • pp.349-357
    • /
    • 2011
  • Since nesfatin-1/NUCB2 involved in the control of appetite and energy metabolism was discovered for the first time in hypothalamus, many reports have shown its expression in various tissues. We also recently demonstrated that nesfatin-1/NUCB2 was expressed in the reproductive organs of mouse. However, no data exist on nesfatin-1/NUCB2 expression, regulation, and secretion in the uterus. Therefore, we examined the expression of nesfatin-1/NUCB2 in mouse uterus and the effects of PMSG and estrogen on its expression. NUCB2 mRNA expression in the uterus was determined by conventional and real-time PCR and nesfatin-1 protein expression was detected by western blotting. In immunohistochemistry staining, nesfatin-1 protein was localized at the epithelial cells of the uterine glands and endometrium. Nesfatin-1 protein binding sites were displayed at the epithelial cells of uterine glands and specific granulocytes including neutrophils. Additionally, to examine if the nesfatin-1/NUCB2 expression in the uterus is regulated by gonadotropin or estrogen, ovariectomized mice were treated with PMSG or $17{\beta}$-estradiol. The expression levels of NUCB2 mRNA in the uterus was significantly increased in the control mice after PMSG treatment, but not in the ovariectomized mice. In contrast, NUCB2 mRNA expression was dramatically increased in the ovariectomized mice after treatment with $17{\beta}$-estradiol. We report here for the first time that nesfatin-1/NUCB2 mRNA and protein express in the mouse uterus and its expression is regulated by estrogen secreted from the ovary, but not gonadotropin from the pituitary.

Analysis of Global Gene Expression Profile of Human Adipose Tissue Derived Mesenchymal Stem Cell Cultured with Cancer Cells (암세포주와 공동 배양된 인간 지방 조직 유래 중간엽 줄기 세포의 유전자 발현 분석)

  • Kim, Jong-Myung;Yu, Ji-Min;Bae, Yong-Chan;Jung, Jin-Sup
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.631-646
    • /
    • 2011
  • Mesenchymal stem cells (MSC) are multipotent and can be isolated from diverse human tissues including bone marrow, fat, placenta, dental pulp, synovium, tonsil, and the thymus. They function as regulators of tissue homeostasis. Because of their various advantages such as plasticity, easy isolation and manipulation, chemotaxis to cancer, and immune regulatory function, MSCs have been considered to be a potent cell source for regenerative medicine, cancer treatment and other cell based therapy such as GVHD. However, relating to its supportive feature for surrounding cell and tissue, it has been frequently reported that MSCs accelerate tumor growth by modulating cancer microenvironment through promoting angiogenesis, secreting growth factors, and suppressing anti-tumorigenic immune reaction. Thus, clinical application of MSCs has been limited. To understand the underlying mechanism which modulates MSCs to function as tumor supportive cells, we co-cultured human adipose tissue derived mesenchymal stem cells (ASC) with cancer cell lines H460 and U87MG. Then, expression data of ASCs co-cultured with cancer cells and cultured alone were obtained via microarray. Comparative expression analysis was carried out using DAVID (Database for Annotation, Visualization and Integrated Discovery) and PANTHER (Protein ANalysis THrough Evolutionary Relationships) in divers aspects including biological process, molecular function, cellular component, protein class, disease, tissue expression, and signal pathway. We found that cancer cells alter the expression profile of MSCs to cancer associated fibroblast like cells by modulating its energy metabolism, stemness, cell structure components, and paracrine effect in a variety of levels. These findings will improve the clinical efficacy and safety of MSCs based cell therapy.

Effects of the Exercise Training on Aging Heart in Rat I. Long Term Endurance Exercise (운동훈련이 흰쥐 노화심근에 미치는 영향 I. 장기간 지구력 운동 훈련)

  • 박원학;이상선;이용덕
    • Biomedical Science Letters
    • /
    • v.2 no.1
    • /
    • pp.71-90
    • /
    • 1996
  • There is considerable current interest in the effect of regular vigorous exercise and in particular endurance-running as a possible measure in improving myocardial function. Some data indicate that the aging heart may actually suffer from vigorous endurance exercise. On the contrary appropriate exercise in aged animals improves myocardial function and aerobic energy metabolism. So far there is relatively little data to indicate that endurance exercise is in fact beneficial in improving myocardial function or damaging to heart of aged animals. The present investigation aimed to study the possible effect of a long range treadmill training program on the heart in aging rats. Male rats aged 3, 10, and 20 months were divided at random into a control (sedentary) and an exercise group. The training group was exercised for 5 days a week on an automated treadmill for 20minutes at 18m/min over a period of 5 months. The exercise regimen of our experiments did not cause any significant changes in the tissues and ultrastructural as com-pared with sedentary age-matched control. Tissues and ultrastructures of myocardial cells in trained group aged 8 months are intact and well organized as well as sedentary control group. Age associated tissue and ultrastructural changes of trained group aged 15 months included : an increase in transformed mitochondria, vacuoles, lysosomes, lipid droplets and early lipofuscin. But the trained heart did not show significant difference in tissue and ultrastructural properties from those of sedentary controls. Endurance-trained group aged 25 months showed significant qualitative tissue and ultrastructural difference as compared with age-matched controls. In addition to those found in 25 months control group, focal necrosis, myofibril fraying, hypercontraction band, seperation of intercalated discs, degenerating nucleus and infiltration of collagenous fiber into myocyte were noted in trained 25 months group. The stereological examination of the mi-crographs disclosed no significant difference in the myoflbril, mitochondrion, sarcotubule and in-terstitium volume density and surface density of mitochondrial cristae and numerical density of mitochondria between trained and control group aged 8 and 15 months. In the trained 25 months group, significant increase in volume density of interstitium, lipofucsin granule were shown as compared to untrained age-matched control. On the other hand, significant decrease in mitochondrion volume density was shown. The myofibril volume density did not differ between trained and control group although trained group showed slight increase. From the data obtained a reduced mitochondria/myofibrils ratio was found in trained rat heart aged 25 months and there was no difference between trained and control rat aged 15 months. But a slight but not significant increase was found in the trained group aged 8 months as compared with same age control group. Such increase in the ratio in young animals is considered to be of great importance to cardiac pumping and adaptability. Whereas such adaptations don't seem to occur in aged heart muscle. This study proposed that repeated endurance exercise do not cause any significant qualitative and quantitative ultrastructural change of heart muscle in young(3months) and adult (10months) suggesting that the heart is able to adapt to the exercise. On the contrary, the repeated endurance exercise stress may actually induce degenerative changes in the aged heart muscle(20months).

  • PDF

Expression of Nesfatin-1/NUCB2 and Its Binding Site in Mouse Ovary (생쥐 난소 내 Nesfatin-1/NUCB2 발현과 결합 부위 확인)

  • Kim, Jin-Hee;Youn, Mi-Ra;Bang, So-Young;Sim, Ji-Yeon;Kang, Hee-Rae;Yang, Hyun-Won
    • Development and Reproduction
    • /
    • v.14 no.4
    • /
    • pp.287-295
    • /
    • 2010
  • It was recently reported that nesfatin-1/NUCB2, which is secreted from the brain, controls appetite and energy metabolism. The purpose of this research was to confirm whether or not the protein and its binding site should have been expressed in the mouse reproductive organs and to know the possible effects of nesfatin-1 on the reproductive function. Using the ICR female mouse ovary and uterus, the expression of NUCB2 mRNA was confirmed with the conventional PCR and the relative amount of NUCB2 mRNA in the tissues was analyzed with real-time PCR. Immunohistochemical staining was performed using the nesfatin-1 antibody to investigate the nesfatin-1 protein expression and the biotin conjugated nesfatin-1 to confirm the binding site for nesfatin-1 in the ovary. Furthermore, in order to examine if the expression of NUCB2 mRNA in the ovary and uterus is affected by gonadotropin, its mRNA expression was analyzed after PMSG administration into mice. As a result, the expression level of NUCB2 mRNA in the ovary and the uterus was as much as the expression level in hypothalamus. As a result of the immunohistochemical staining, nesfatin-1 proteins were localized at the theca cells, the interstitial cells, and some of the luteal cells. However, the granulosa cells in the follicles did not stain. Interestingly, the oocytes in the some follicles were stained with nesfatin-1. On the other hand, nesfatin-1 protein binding sites were displayed at the theca cells and the interstitial cells near the tunica albuginea. After PMSG administration the expression level of NUCB2 mRNA was increased in the ovary and the uterus. These results demonstrate that for the first time the nesfatin-1 and its binding site were expressed in the ovary and NUCB2 mRNA expression was controlled by gonadotropin, suggesting an important role in the reproductive organs as a local regulator. Therefore, further study is needed to elucidate the functions of nesfatin-1 on the reproductive organs.

Study on Consequent Body Fat and Serum Lipid Metabolism after Cocoon Hydrolysate, Green Tea Leaves and Dietary Fiber Supplementation (누에고치 유래 실크 펩타이드와 녹차잎 및 식이 섬유소 보충이 체지방 및 혈청 지질 대사에 미치는 영향에 관한 연구)

  • Lee, Min-Sook;Kim, Dong-Myung;Cho, Byung-Nam;Koo, Seung-Ja;Jew, Sang-Sup;Jin, Dong-Kyu;Lee, Sung-Hee
    • Applied Biological Chemistry
    • /
    • v.46 no.2
    • /
    • pp.123-129
    • /
    • 2003
  • This study is to investigate consequent nutrient intake status, Influences of body mass index (BMI) and serum lipid composition, and fat distribution on the cocoon hydrolysate, green tea leaves and dietary fiber supplementation. During 2 months of this research (April to May, 2002), 47 women aged 20 yr-30 yr (average age 26.2 yr) were selected as subjects. Nutrient intake was investigated by questionnaire and 24-hr recall method. Antropometric assessments of the subjects were investigated by SBIA method (Segmental bioimpedance assay, Inbody 3.0). The results were as follows: mean body weight was 60.7 kg, mean body height 161.7 cm and mean BMI 23.4. Status of energy intakes significantly decreased (p<0.01) and dietary fiber intakes significantly increased (p<0.001) after supplementation. BMI and WHR (waist-hip ratio) significantly decreased (p<0.01) and body fat significantly decreased after supplementation (p<0.001). Total cholesterol and LDL-cholesterol significantly decreased after supplementation (p<0.05). HDL-cholesterol was negatively correlated with BMI and WHR (p<0.01). LDL/HDL ratio was positively correlated with BMI (p<0.01) and WHR (p<0.05). Above results of this study show that low-molecule peptide, green tea leaves and dietary fiber supplementation-added routine diet improves lessening body fat distribution, total cholesterol, LDL-cholesterol. Especially, decrease of abdominal fat and WHR were notable. That meant decrease of risk factors.

Bone Mineral Density and Bone Markers in the Children with Epilepsy Taking on Chronic Anticonvulsants (장기간 항경련제를 복용하고 있는 소아 간질 환아들의 골밀도 및 골대사 지표들)

  • Lee, Soon Bum;Kang, So Young;Yu, Jeesuk
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.5
    • /
    • pp.527-533
    • /
    • 2005
  • Purpose : Long-term administration of anticonvulsants in children with epilepsy may cause short stature, hypocalcemia and low bone mineral density. This study was performed for the early detection of abnormal bone metabolism in children with epilepsy on taking anticonvulsants. Methods : Thirty children aged 5 to 16 years who were diagnosed with epilepsy were enrolled in this study. All had taken anticonvulsants for more than one year. Bone mineral density of lumbar vertebra was measured by dual-energy X-ray absorptiometry. Serum calcium, phosphorous, alkaline phosphatase, 25-hydroxycholecalciferol[$25(OH)D_3$], parathyroid hormone, and urine deoxypyridinoline were measured as biochemical bone markers. Bone age and body mass index were also calculated. Results : Bone minreal density, body mass index, bone age, and height were significantly decreased in two female patients who had taken two antiepileptic drugs for more than four years and they also had chronic diseases such as cerebral palsy with microcephaly, encephalomalacia, and microcephaly with atrial septal defect. Bone mineral density had significant positive correlations with body mass index(P<0.01) and bone age(P<0.01). Conclusion : This study showed chronic medication of anticonvulsants in children may cause low bone mineral density and short stature. Bone age and body mass index could be the important surrogate markers to find the population at risk. More studies, including a large study population and long term cohort study, will be required.

A Comparative Study of Bone Mineral Density and Urinary Bone Metabolic Makers according to the Nutrients Intake Levels in Postmenopausal Women (일부 폐경 후 여성의 영양소 섭취수준에 따른 골밀도와 소변 중 골대사 지표 비교연구)

  • Kim, Mi-Hyun;Lee, Da-Hong
    • Journal of Nutrition and Health
    • /
    • v.40 no.8
    • /
    • pp.719-727
    • /
    • 2007
  • To elucidate the relationship among the levels of nutrients intake, bone mineral density(BMD) and the urinary biochemical markers of bone metabolism, this survey is conducted with 225 postmenopausal women over 50 years of age. The urinary biochemical markers including deoxypyridinoline(DPD) and Ca excretion were measured. Bone mineral densities of lumbar spine(L2-L4), femoral neck, ward's triangle and trochanter were measured with dual-energy X-ray absorptiometry and the nutrient intake data obtained by 24 hr recall method. Mean age of all subjects was 64.8 years old, and the BMDs of the subjects were $0.86g/cm^2$(lumbar spine), $0.60g/cm^2$(femoral neck), $0.49g/cm^2$(trochanter), and $0.41g/cm^2$(ward's triangle). The results were compared among 3 groups with different nutrient intake levels classified by the percentage of Dietary Reference Intakes(DRIs) for Koreans as follows: low < 75% DRIs, 75% DRI $\leq$ adequate < 125% DRIs, high $\geq$ 125% DRIs. Bone mineral density of adequate protein intake group was significantly higher than those of low and high protein intake groups(p<0.05). Urinary DPD excretion was lowest in protein and calcium adequate intake groups(p<0.05, p<0.05), respectively. In relation to urinary Ca excretion, it is revealed to be considerably lower in the groups taking protein and vitamin C adequate intake(p<0.05, p<0.05). The percent DRI of protein and calcium were positively correlated with the BMD of the femoral neck after adjusted age(p<0.05, p<0.05). These results showed that there are probably some relationships between nutrient intake levels and urinary biochemical markers. For postmenopausal women with adequate nutrition expecially protein, calcium and vitamin C, has an important role to postpone bone resorption and to prevent the decrease of bone density.

Enzymatic characterization of Paenibacillus amylolyticus xylanases GH10 and GH30 for xylan hydrolysis (Paenibacillus amylolyticus 유래 xylanase GH10 및 GH30의 xylan 가수분해 특성)

  • Nam, Gyeong-Hwa;Jang, Myoung-Uoon;Kim, Min-Jeong;Lee, Jung-Min;Lee, Min-Jae;Kim, Tae-Jip
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.463-470
    • /
    • 2016
  • The enzymatic degradation of xylans is the most versatile way to obtain the high value-added functional compounds or the fermentable sugars for renewable energy. The endo-${\beta}$-xylanases are the major enzymes which hydrolyze the internal ${\beta}$-1,4-linkages of xylan backbones to produce the mixtures of xylooligosaccharides including xylobiose and xylotriose. Among them, glucuronoxylanase GH30 can exclusively hydrolyze the internal ${\beta}$-1,4-linkages of xylans decorated with methylglucuronic acid branches. In the present study, two xylanolytic enzyme (PaXN_10 and PaGuXN_30) genes were cloned from Paenibacillus amylolyticus KCTC 3005, and expressed in Escherichia coli, respectively. PaXN_10 (38.7 kDa) belongs to the endo-${\beta}$-xylanases GH10 family, while PaGuXN_30 (58.5 kDa) is a member of glucuronoxylanase GH30. They share the same optimal reaction conditions at $50^{\circ}C$ and pH 7.0. Enzymatic characterization proposed that P. amylolyticus can utilize the hardwood glucuronoarabinoxylans via the cooperative actions of xylanases GH10 and GH30. The extracellular PaGuXN_30 is secreted into the medium and hydrolyzes glucuronoarabinoxylans to release a series of aldouronic acid mixtures with a methylglucuronic acid branch. The resultant products being transported into the microbial cell are successively degraded into the smaller xylooligosaccharides by the intracellular PaXN_10, which will be utilized for the cellular metabolism.