• Title/Summary/Keyword: Energy Loss Coefficient

Search Result 245, Processing Time 0.025 seconds

Analysis on Wave Absorbing Performance of a Pile Breakwater (파일 방파제의 소파성능 해석)

  • Cho, Il-Hyoung;Koh, Hyeok-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.1-7
    • /
    • 2007
  • Based on the eigenfunction expansion method, the wave-absorbing performance of a square or circular pile breakwater was investigated. Flow separation resulting from sudden contraction and expansion is generated and is the main cause of significant energy loss. Therefore, evaluation of an exact energy loss coefficient is critical to enhancing the reliability of the mathematical model. To obtain the energy loss coefficient, 2-dimensional turbulent flow is analyzed using the FLUENT commercial code, and the energy loss coefficient can be obtained from the pressure difference between upstream and downstream. It was found that energy loss coefficient of circular pile is 20% that of a square pile. To validate the fitting equation for the energy loss coefficient, comparison between the analytical results and the experimental results (Kakuno and Liu, 1993) was made for square and circular piles with good agreement. The array of square piles also provides better wave-absorbing efficiency than the circular piles, and the optimal porosity value is near P=0.1.

Energy Conservation for Runoff and Soil Erosion on the Hillslope (산지사면의 유출 및 토양침식에 대한 에너지 보존)

  • Shin, Seung-Sook;Park, Sang-Deog;Cho, Jae-Woong;Hong, Jong-Sun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.234-238
    • /
    • 2008
  • The energy conservation theory is introduced for investigating processes of runoff and soil erosion on the hillslope system changed vegetation condition by wildfire The rainfall energy, input energy consisted of kinetic and potential energy, is influenced by vegetation coverage and height. Output energy at the outlet of hillslope is decided as the kinetic energy of runoff and erosion soil, and mechanical work according to moving water and soil is influenced dominantly by the work rather than the kinetic energy. Relationship between output and input energy is possible to calculate the energy loss in the runoff and erosion process. The absolute value of the energy loss is controlled by the input energy size of rainfall because energy losses of runoff increase as many rainfall pass through the hillslope system. The energy coefficient which is dimensionless is defined as the ratio of input energy of rainfall to output energy of runoff water and erosion soil such as runoff coefficient. The energy coefficient and runoff coefficient showed the highest correlation coefficient with the vegetation coverage. Maximum energy coefficient is about 0.5 in the hillslope system. The energy theory for output energy of runoff and soil erosion is presented by the energy coefficient theory associated with vegetation factor. Also runoff and erosion soil resulting output energy have the relation of power function and the rates of these increase with rainfall.

  • PDF

Reflection and Transmission Coefficients by a Circular Pile Breakwater (원형 파일 방파제에 의한 반사율과 투과율)

  • Cho, Il-Hyoung;Koh, Hyeok-Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.1
    • /
    • pp.38-44
    • /
    • 2007
  • Using the mathematical model suggested by Bennet et al.(1992), the reflection and transmission coefficients by a circular pile breakwater has been investigated in the framework of potential theory. Flow separation due to sudden contraction and expansion is generated and is the main cause of significant energy loss. Therefore, evaluation of exact energy loss coefficient is critical to enhance the reliability of mathematical model. To obtain the energy loss coefficient, 2-dimensional turbulent flow is analyzed using the FLUENT commercial code. The energy loss coefficient can be obtained from the pressure difference between upstream and downstream. Energy loss coefficient is the function of porosity and the relation equation between them is suggested throughout the curve fitting processing. To validated the suggested relation, comparison between the analytical results and the experimental results is made for four different porosities with good agreement.

On the Transmission Loss Measurement System (전달손실계수 측정 시스템에 대하여)

  • Ryu, Yun-Seon;Kim, Yoon-Seok;Callec, Philippe
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.166-171
    • /
    • 2002
  • The transmission loss coefficient is very important acoustic property in parallel with absorption and acoustic impedance categorizing the acoustical materials, which can control the acoustical problems. At the same time, the transmission loss coefficient is a key parameter to choose the optimum material for the analysis of acoustical characteristics of material using SEA(Statistical Energy Analysis). In this paper, the transmission loss coefficient measurement system using 4-microphone impedance tube is proposed, based on the idea calculating the full transfer matrix of the acoustical sample to test. The theoretical background and measurement system are introduced, and finally the measurement results are verified.

  • PDF

On the Transmission Loss Measurement System (전달손실계수 측정시스템에 대하여)

  • Yunseon RYU;Yoon-Seok KIM;Philippe CALLEC
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.323.1-323
    • /
    • 2002
  • The transmission loss coefficient is very important acoustic property in parallel with absorption and acoustic impedance categorizing the acoustical materials, which can control the acoustical problems. At the same time, the transmission loss coefficient is a key parameter to choose the optimum material for the analysis of acoustical characteristics of material using SEA(Statistical Energy Analysis). In this paper, the transmission loss coefficient measurement system usiong 4-microphone impedance tube is proposed, based on the idea calculating the full transger matrix of the acoustical sample to test. The theoretical backgroung and measurement system are introduced, and finally the measurement results are verified.

  • PDF

On the Transmission Loss Measurement System(Part II) (전달손실계수 측정 시스템에 대하여(Part II))

  • 김윤석;류윤선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.658-661
    • /
    • 2003
  • The transmission loss coefficient is very important acoustic property in parallel with absorption and acoustic impedance categorizing the acoustical materials, which can control the acoustical problems. At the same time, the transmission loss coefficient is a key parameter to choose the optimum material for the analysis of acoustical characteristics of material using SEA(Statistical Energy Analysis). In this paper, the transmission loss coefficient measurement system using 4-microphone impedance tube is proposed, based on the idea calculating the full transfer matrix of the acoustical sample to test. The theoretical background and measurement system are introduced, and finally the measurement results are verified.

  • PDF

Energy Loss Coefficient of Waves Considering Thickness of Perforated Wall (유공벽의 두께를 고려한 파의 에너지손실계수)

  • Yoon, Sung-Bum;Lee, Jong-In;Nam, Doo-Hyun;Kim, Seon-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.321-328
    • /
    • 2006
  • In the present study extensisve numerical experiments are conducted using the CFD code, FLUENT, to investigate the energy dissipation due to perforated walls for various wall-thickness and flow conditions. A new empirical formula for energy loss coefficient considering the effect of the thickness of perforated wall is obtained based on the results of computational experiments. It is found that the energy loss coefficient decreases as the wall-thickness increases and the maximum coefficient reduction reaches upto 40% of the value calculated using the conventional formulas for the sharp-crested orifice. To check the validity of the new formula the reflection coefficient of waves due to perforated wall is evaluated and compared with the results of existing theories and hydraulic experiments. The result shows that the new formula is superior to the conventional ones.

Loss Analysis by Impeller Blade Angle in the S-Curve Region of Low Specific Speed Pump Turbine

  • Ujjwal Shrestha;Young-Do Choi
    • New & Renewable Energy
    • /
    • v.20 no.2
    • /
    • pp.35-43
    • /
    • 2024
  • A pump turbine is a technically matured option for energy production and storage systems. At the off-design operating range, the pump turbine succumbed to flow instabilities, which correlated with the pump turbine geometry. A low specific speed pump turbine was designed and modified according to the impeller blade angle. Reynolds-Average Navier-Stokes is carried out with a shear stress transport turbulence model to evaluate the detailed flow characteristics in the pump turbine. The impeller blade inlet angle (𝛽1) and outlet angle (𝛽2) are used to evaluate hydraulic loss in the pump turbine. When 𝛽1 changed from low to high value, the maximum efficiency is increased by 4.75% in turbine mode. The S-Curve inclination is reduced by 8% and 42% for changes in 𝛽1 and 𝛽2 from low to high values, respectively. At α = 21°, the shock loss coefficient (𝜁s) is reduced by 16% and 19% with increases of 𝛽1 and 𝛽2 from low to high values, respectively. When 𝛽1 and 𝛽2 values increased from low to high, the impeller friction coefficient (𝜁f) increased and decreased by 20% and 8%, respectively. Hence, the high 𝛽2 effectively reduced the loss coefficient and S-Curve inclination.

Acoustic Study of light weight insulation system on Dash using SEA technique (SEA 기법을 이용한 저중량 대시판넬 흡,차음재 성능에 대한 연구)

  • Lim, Hyo-Suk;Park, Kwang-Seo;Kim, Young-Ho;Kim, In-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.51-55
    • /
    • 2007
  • In this paper Statistical Energy Analysis has been considered to predict high frequency air borne interior noise. Dash panel Insulation is major part to reduce engine excitation noise. Transmission loss and absorption coefficient are considered to predict dash insulation performance. Transmission lose is derived from coupling loss factor and absorption coefficient is derived from internal damping loss factor. Material Biot properties were used to calculate each loss factors. Insulation geometry thickness distribution was hard to measure, so FeGate software was used to calculate thickness map from CAD drawing. Each predicted transmission losses between conventional insulation and light weight insulation were compared with SEA. Transmission loss measurement was performed to validate each prediction result, and it showed good correlation between prediction and measurement. Finally interior noise prediction was performed and result showed light weight insulation system can reduce 40% weight to keep similar performance with conventional insulation system, even though light weigh insulation system has lower sound transmission loss and higher absorption coefficient than conventional system.

  • PDF

An Estimation of Head Loss Coefficients at Continuous Circular Manhole (연속 맨홀에서의 손실계수 산정)

  • Yoon, Young-Noh;Kim, Jung-Soo;Han, Chyung-Such;Yoon, Sei-Eui
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.731-734
    • /
    • 2008
  • Urban sewer systems are designed to operate in open-channel flow regime and energy loss at circular manholes are usually not significant. However, the energy loss at manholes, often exceeding the friction loss of pipes under surcharge flow, is considered as one of the major causes of inundation in urban area. Therefore, it is necessary to analyze the head loss associated with manholes, especially in surcharge flow. Hydraulic experimental apparatus with two circular manholes was installed for this study. The range of the experimental discharges were from $1.0\ell/sec$ to $4.4\ell/sec$. Head loss coefficient was maximum because of strong oscillation of water surface when the range of manhole depth ratios$(h_m/D_{in})$ were from 1,2 to 1.25. The average head loss coefficients for upstream manhole and downstream manhole were 0.58 and 0.23 respectively. Head loss at upstream manhole is nearly 2.5 times more than one at downstream manhole.

  • PDF