• Title/Summary/Keyword: Energy Improvement

Search Result 3,538, Processing Time 0.03 seconds

Alternative Selection Method for Energy Efficiency Improvement of Old Detached House (노후 단독주택의 난방에너지 효율 개선을 위한 대안 선정 방법에 관한 연구)

  • Hwang, Seok-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.2
    • /
    • pp.45-55
    • /
    • 2019
  • More than 76% of the detached houses in Korea are over 20 years old. These old detached houses have poor energy efficiency. According to the 2017 Housing Census (Statistics Korea), more than 50% of low-income families live in detached houses. Therefore, the improvement of energy efficiency in old detached houses is needed from the viewpoint of energy welfare. The general method of building energy modelling for the verification of energy efficiency is based on the construction year data of "Building Design Criteria for Energy Saving" due to the cost and time involved in collecting the thermal performance data of buildings. There is poor accuracy with the deterioration of long-term aging of building materials. Also, the selection of alternatives for energy performance improvement is based on the items to be applied, not a performance improvement goal. It is difficult to calculate energy performance that reflects variations in various parameters with dynamic energy simulations. In this study, the influence of long-term aging is used to accurately predict the energy performance of old detached houses. The building energy modelling method is called ENERGY#, which is a static analysis method based on ISO13790. Energy performance is evaluated by a combination of input variables including building orientation, insulation of walls and roof, thermal performance of windows and window/wall ratio, and infiltration rate. Finally, this study provides a way to determine alternatives that meet energy performance improvement goals.

Study on Energy Consumption according to Building Envelope Performance and Indoor Temperature (건축물의 외피성능 및 실내온도에 따른 에너지 사용량에 관한 연구)

  • Yoo, Ho-Chun;Kang, Hyun-Gu
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.101-108
    • /
    • 2011
  • This study aims to suggest an energy consumption improvement plan for university buildings through an analysis of energy consumption. Upon a simulation of subject building to interpret energy consumption, it was found that 154.07kWh/$m^2$ of energy is consumpted annually. Improvement of design elements can cut down the energy consumption to 135.61kWh/$m^2$ according to an energy reduction analysis related to envelope performance improvement. Additional improvement of lights and heat exchanger can curtail annual energy consumption to 108.32kWh/$m^2$. Also, an analysis of energy consumption while increasing indoor temperature gradually showed that the two factors are in proportion. $6^{\circ}C$ higher temperature requires over twice of the current energy. Based on this survey result, performance improvement due to building management and envelope elements which influence to building cooling and heating loads can curtail building energy consumption.

The research in rationalization of the use of energy in electric power (에너지 이용 합리화를 위한 전기에너지 사용계획 수립에 관한 연구)

  • Kim, Man-Kook;Nam, Si-Bok
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.392-399
    • /
    • 2009
  • This study investigates and analyzed electrical energy curtailment effect by each business department and by energy use efficiency elevation equipment because do an energy use plan that is enforced in each variety business that is developed in domestic by model. When plan the recent electrical energy use with this, I wish to contribute in energy use general planning establishment improvement that is aiming energy efficiency improvement newly by groping improvement plan moment deduce problem. Specially, search present condition and problem by electrical energy curtailment equipment application that probes mass and analyzed, and is applied in present our country according to analysis contents to the latest energy use plan that was enforced on energy use rationality narration but allowed purpose.

  • PDF

Analysis of GHG Reduction Scenarios on Building using the LEAP Model - Seoul Main Customs Building Demonstration Project - (LEAP 모형을 이용한 건축물의 온실가스 감축 시나리오 분석 - 서울세관건물 그린리모델링 시범사업을 중심으로 -)

  • Yoon, Young Joong;Kim, Min Wook;Han, Jun;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.341-349
    • /
    • 2016
  • This study is intended to set a greenhouse gas emission scenario based on green remodeling pilot project (Annex building of Seoul Customs Office) using LEAP model, a long-term energy plan analysis model, to calculate the energy saving and greenhouse gas emission till year 2035 as well as to analyze the effect of electric power saving cost. Total 4 scenarios were made, Baseline scenario, assuming the past trend is to be maintained in the future, green remodeling scenario, reflecting actual green remodeling project of Seoul Customs Office, behavior improvement and renewable energy supply, and Total scenario. According to the analysis result, the energy demand in 2035 of Baseline scenario was 6.1% decreased from base year 2013, that of green remodeling scenario was 17.5%, that of behavior improvement and renewable energy supply scenario was 21.1% and that of total scenario was 27.3%. The greenhouse emission of base year 2013 was $878.2tCO_2eq$, and it was expected $826.3tCO_2eq$, approx. 5.9% reduced, in 2035 by Baseline scenario. the cumulative greenhouse gas emission saving of the analyzing period were $-26.5tCO_2eq$ by green remodeling scenario, $2.8k\;tCO_2eq$ by behavior improvement and renewable energy supply scenario, and $2.0k\;tCO_2eq$ by total scenario. In addition the effect of electricity saving cost through energy saving has been estimated, and it was approx. 634 million won by green remodeling scenario and appro. 726 million won by behavior improvement and renewable energy supply scenario. So it is analyzed that of behavior improvement and renewable energy supply scenario would be approx. 12.7% higher than that of green remodeling scenario.

Efficiency of Energy Performance Improvement by Retrofit in existing Buildings (기존 건축물의 리트로핏에 따른 에너지 성능개선 효과 분석)

  • Kim, Dong-Hee;Moon, Hyunseok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.126-127
    • /
    • 2016
  • The Korean government has developed and strengthened energy related regulations to pursue eco-friendly buildings since 1979. However, required design standards for energy based quantitative studies focused on energy performance in existing buildings are meagered. Therefore in this study, required energy performance by design standards for energy are analyzed. And a energy performance by retrofits for insulation improvement is studied using energy simulations.

  • PDF

Energy Saving Effect and Improvement of Indoor Thermal Environment through the Window Retrofit (창호 리트로피트를 통한 에너지 절감 및 실내 열환경 개선 효과 분석에 관한 연구)

  • Jeong, Jin-Woo;Ju, Jung-Hoon;Cho, Dong-Woo
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.3
    • /
    • pp.29-36
    • /
    • 2018
  • The goal of this study is to retrofit the windows of residential buildings and to activate the green remodeling by verifying energy saving and indoor thermal environment. As a result of analysis of the energy saving effect of 458 units window retrofits, it was possible to reduce the energy requirement by 48.20% ~ 54.97%. According to the improvement on indoor environment, it was possible to operate by reducing heating temperature and supply time. The actual gas consumption of the heating period was reduced by 25% compared with that of the window retarder to save 28,968 thousand won of heating energy cost. Resident's satisfaction surveys were conducted one year after window retrofit. More than 80% of the respondents answered that they satisfied the improvement on window performance, indoor thermal environment and indoor sound environment. As a result, we verified the energy saving effect and the improvement on the indoor environment through window retrofits.

A Multiplex Housing Energy Conservation Strategy through Combining Insulation Standard Based Green Roof Systems and Passive Design Elements

  • Son, Hyeongmin;Park, Dong Yoon;Chang, Seongju
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.31-38
    • /
    • 2014
  • Recently, the coverage of urban forests has been rapidly decreasing as the cities are created and expanding. Consequently, there arise urban problems such as heat island effect, urban flooding, urban desertification and so on. In this context, green roof systems is considered to be an efficient alternative to deal with these problems. However, it is difficult to apply green roof to new buildings since the majority of the buildings in cities are already constructed and the demand for new building constructions is not high enough. Therefore, it should be considered to apply green roof system to existing buildings for resolving various problems. This study evaluates heating and cooling energy consumption based on the combination of passive design factors such as wall, roof, window insulation in addition to a green roof system applied to an existing house by using an energy simulation program. Total 8 potential improvement cases are developed. Each case is applied to the same house with different insulation standard for simulations. Through the analysis of the simulated cases with the chosen test house, it is confirmed that heating energy consumption decreases as improvement cases are applied, but cooling energy consumption is relatively not much affected by each improvement case. In addition, when each improvement case is applied to already highly insulated house, the effect of thermal energy improvement decreases while the same improvement that is applied to the case with low insulated house tends to yield higher improvement rate.

Revolution of nuclear energy efficiency, economic complexity, air transportation and industrial improvement on environmental footprint cost: A novel dynamic simulation approach

  • Ali, Shahid;Jiang, Junfeng;Hassan, Syed Tauseef;Shah, Ashfaq Ahmad
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3682-3694
    • /
    • 2022
  • The expansion of a country's ecological footprint generates resources for economic development. China's import bill and carbon footprint can be reduced by investing in green transportation and energy technologies. A sustainable environment depends on the cessation of climate change; the current study investigates nuclear energy efficiency, economic complexity, air transportation, and industrial improvement for reducing environmental footprint. Using data spanning the years 1983-2016, the dynamic autoregressive distributed lag simulation method has demonstrated the short- and long-term variability in the impact of regressors on the ecological footprint. The study findings revealed that economic complexity in China had been found to have a statistically significant impact on the country's ecological footprint. Moreover, the industrial improvement process is helpful for the ecological footprint in China. In the short term, air travel has a negative impact on the ecological footprint, but this effect diminishes over time. Additionally, energy innovation is negative and substantial both in the short and long run, thus demonstrating its positive role in reducing the ecological footprint. Policy implications can be extracted from a wide range of issues, including economic complexity, industrial improvement, air transportation, energy innovation, and ecological impact to achieve sustainable goals.

A Study on the Improvement of the Water Source Energy Distribution Regulation for High Efficient Data Center Cooling System in Korea (데이터센터 냉방시스템 고효율화를 위한 국내 수열에너지 보급 제도 개선에 관한 연구)

  • Cho, Yong;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.3
    • /
    • pp.21-29
    • /
    • 2021
  • In this study, the current regulation of the water source energy, one of the renewable energy, was analyzed, and the improvement plan for the high efficient data center cooling system was suggested. In the improvement plan, the design and construction guidelines of the water source energy system permit to adopt the cooling and heating system with or without heat pump. In addition, it should also include the system operated in the cooling mode only all year-round. The domestic test standards to consider the water source operating conditions should be developed. Especially, it is highly recommended that the test standards to include the system with forced cooling and free cooling modes related with the enhanced data center cooling system adopting the water source energy.

Improvement of waste landfill by dynamic compaction method (동다짐공법에 의한 쓰레기매립지반의 개량특성 분석)

  • 정하익;곽수정
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.404-410
    • /
    • 2002
  • Dynamic compaction is an efficient ground improvement technique for loose soils and waste landfill. The improvement is obtained by controlled high energy tamping and its effects vary with the soil properties and energy input. This study demonstrated the application of dynamic compaction method for the improvement of waste landfill in construction site. Various tests and measurements such as standard penetration test, bore hole loading test, crater settlement, ground settlement, pore water pressure were peformed during dynamic compaction field test. From the field test results, the efficiency of dynamic compaction method for the improvement of waste landfill was proved.

  • PDF