• 제목/요약/키워드: Energy Harvesting Mechanism

검색결과 33건 처리시간 0.027초

전자기유도방식의 에너지 하베스팅을 이용한 자가발전 무선 비상호출기 구현 연구 (Feasibility study for the self powered wireless emergency call button using electromagnetic energy harvesting mechanism)

  • 김일중;최연석
    • 대한안전경영과학회지
    • /
    • 제16권2호
    • /
    • pp.111-119
    • /
    • 2014
  • This paper describes the design and implementation of a electromagnetic energy harvesting mechanism and electronic circuit for autonomous emergency call system. This analysis results show the power output of the proposed harvesting mechanism and circuit up to max power output 5V and it can hold up to 65 msec of the power generation and 10msec of the RF transmission. Based on the these testing results, the implementation of autonomous emergency call device without battery power or any external power source is feasible.

웨이브 글라이더 메커니즘을 이용한 이동형 파력발전 시스템의 성능 테스트와 최적 설계에 관한 연구 (Study on Mobile Wave Energy Harvesting System Utilizing Wave Glider Mechanism)

  • 조한길;유선철
    • 한국해양공학회지
    • /
    • 제32권5호
    • /
    • pp.393-401
    • /
    • 2018
  • This paper reports a novel mobile-type wave energy harvesting system. The proposed system adopts a wave glider's propulsion mechanism. A wave glider's blades were mounted on a circular layout and generated a rotational motion. Combining the wave converting system with the wave glider, a mobile floating-type robotic buoy system was developed. It enabled the relocation of the buoy position, as well as station-keeping for long term operation. It had a small size and could efficiently harvest wave energy. A feasibility study and modeling were carried out, and a prototype system was constructed. Various tank tests were performed to optimize the proposed wave energy harvesting system.

에너지 하베스팅을 위한 쿼드로터의 퍼칭 메커니즘 연구 (A Perching Mechanism of a Quadrotor for Energy Harvesting)

  • 최홍철;신내호
    • 로봇학회논문지
    • /
    • 제13권3호
    • /
    • pp.198-204
    • /
    • 2018
  • Quadrotor with limited flight time due to battery level can have the extended mission life by applying energy harvesting technology. Bio-inspiration from the birds' locomotion of flight and perch-and-stare can make energy consumption efficient, and energy harvesting technology can generate energy. In order to charge the battery with solar power, the drones are required to be in a position without shade. In the mountainous terrain, a novel mechanism is required in order to be located stably at the top of the tree or the inclined rock. In this study, we propose an analysis of the origami structure and the concept design of the perching mechanism with two stable equilibrium states. The origami structure composed of compliant material can be applied to the perching mechanism that can be locked passively. Moreover, the experimental results of the trajectory and perching test are discussed.

EH-WSN에서 에너지 효율 향상 및 전송지연 축소를 위한 MAC 프로토콜 설계 (Design of MAC Protocol for Improving Energy Efficiency and Reducing Transmission Delay in EH-WSN)

  • 박석우;나인호
    • 스마트미디어저널
    • /
    • 제8권2호
    • /
    • pp.21-28
    • /
    • 2019
  • 최근의 에너지 하베스팅 무선 센서 네트워크에 대한 연구는 제한된 에너지 자원 문제를 해결하여 네트워크 수명을 효율적으로 연장시킬 수 있는 기술 개발에 집중되고 있다. 에너지 하베스팅 기술은 무선신호에 포함된 에너지를 이용하여 배터리를 충전시킴으로써 네트워크 수명을 지속적으로 연장시킬 수 있는 장점을 지니고 있으나 에너지를 수확하는 시간 동안에는 데이터를 전송할 수 없기 때문에 에너지 수확양이 증가할수록 데이터 전송지연도 증가하는 문제점을 지니고 있다. 이에 따라 에너지 하베스팅 무선 센서 네트워크를 설계할 때에는 네트워크 수명 연장뿐만 아니라 전송지연 축소 문제를 모두 고려하여야 한다. 본 논문에서는 네트워크에 유입되는 트래픽 양과 수확되는 에너지양에 따라 데이터 전송에 필요한 에너지를 계산하고 패킷데이터의 전송 시간을 조절함으로써 종단간 네트워크 지연을 최소화하는 MAC 프로토콜을 제안한다. 이를 위해 에너지 수확 시간을 측정하여 네트워크의 수면 시간을 조절하는 에너지 관리 메커니즘을 설계한다. 또한, 시뮬레이션을 이용한 성능평가를 통하여 기존의 MAC 프로토콜보다 에너지 소비량과 종단간 지연 측면에서 성능이 향상됨을 보인다.

압전체를 이용한 에너지 수집 장치 실험 (Experiments on Piezoelectric Energy Harvesting Device)

  • 정문산;곽문규;김기영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.360-368
    • /
    • 2007
  • This paper is concerned with the development of piezoelectric energy harvesting device. Literature survey was carried out to investigate the state-of-art technology regarding piezoelectric energy harvesting method. It shows that the piezoelectric energy harvesting system has been researched as the needs for the auxiliary power system grow for ubiquitous sensor node. In this study, the piezoelectric energy harvesting system was constructed and the corresponding electric circuit was also built to investigate the power characteristics. Experimental results show that it can charge the small battery with ambient vibrations but still needs an effective mechanism to collect ambient energies.

  • PDF

바람에 의해 구동되는 압전에너지 수집 장치 개발 (Development of Piezoelectric Energy Harvesting Device activated by Wind)

  • 이행우;곽문규;양동호;이한동
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.76-77
    • /
    • 2009
  • This paper is concerned with the development of the piezoelectric energy harvesting(PEH) device using Wind. In this study, the piezoelectric energy harvesting system consisting of a cantilever with a pinwheel and piezoelectric wafer was investigated in detail both theoretically and experimentally. The power output characteristics of the PEH was then calculated and discussed. Theoretical and experimental results showed that the PEH was able to charge a battery with ambient vibrations but still needed an effective mechanism which can convert mechanical energy to electrical energy and an optimal electric circuit which dissipates small energy.

  • PDF

배터리없는 무선 스위치를 위한 에너지 하베스팅 메커니즘의 특성 연구 (A Study on the Characteristic of Energy Harvesting Mechanism for Batteryless Wireless Switch)

  • 최연석
    • 한국산학기술학회논문지
    • /
    • 제15권5호
    • /
    • pp.3114-3120
    • /
    • 2014
  • 산업현장에서 사용되는 무선 비상호출 스위치의 성공적인 운영을 위해서는 지속적인 전원의 공급이 이루어져야 한다. 본 논문은 배터리가 필요 없는 무선 스위치에 적용할 수 있는 전자기 유도방식의 초소형 에너지 하베스팅 메커니즘 개발 및 구현된 메커니즘의 성능 실험 결과를 보여주고 있다. 연구결과로 단 방향 누름 동작과 2mm 이동거리의 제한조건 내에서, 유도기전력을 생성하는 새로운 메커니즘이 제시됐다. 또한, 구현된 메커니즘의 전자기 유도 발전 출력 성능 실험결과로 VDC $4.5V{\pm}25%$(도달시간 1.2msec), 2.5V 이상 전압의 발전시간이 65ms가 됨을 보여주고 있다.

압전 나노발전기: 에너지 수확 기술 (Piezoelectric Nanogenerators: Energy Harvesting Technology)

  • 신동명;황윤회
    • 진공이야기
    • /
    • 제3권2호
    • /
    • pp.17-20
    • /
    • 2016
  • Piezoelectric nanogenerators are energy harvesting device to convert a mechanical energy into an electric energy using nanostructured piezoelectric materials. This review summarizes works to date on piezoelectric nanogenerators, starting with a basic theory of piezoelectricity and working mechanism, and moving through the reports of numerous nanogenerators using nanorod arrays, flexible substrates and alternative materials. A sufficient power generated from nanogenerators suggests feasible applications for either power supplies or strain sensors of highly integratedl nano devices. Further development of nanogenerators holds promise for the development of self-powered implantable and wearable electronics.

Self-powered hybrid electromagnetic damper for cable vibration mitigation

  • Jamshidi, Maziar;Chang, C.C.;Bakhshi, Ali
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.285-301
    • /
    • 2017
  • This paper presents the design and the application of a new self-powered hybrid electromagnetic damper that can harvest energy while mitigating the vibration of a structure. The damper is able to switch between an energy harvesting passive mode and a semi-active mode depending on the amount of energy harvested and stored in the battery. The energy harvested in the passive mode resulting from the suppression of vibration is employed to power up the monitoring and electronic components necessary for the semi-active control. This provides a hybrid control capability that is autonomous in terms of its power requirement. The proposed hybrid circuit design provides two possible options for the semi-active control: without energy harvesting and with energy harvesting. The device mechanism and the circuitry that can drive this self-powered electromagnetic damper are described in this paper. The parameters that determine the device feasible force-velocity region are identified and discussed. The effectiveness of this hybrid damper is evaluated through a numerical simulation study on vibration mitigation of a bridge stay cable under wind excitation. It is demonstrated that the proposed hybrid design outperforms the passive case without external power supply. It is also shown that a broader force range, facilitated by decoupled passive and semi-active modes, can improve the vibration performance of the cable.

압전체를 이용한 에너지 수집 장치 개발 및 실험 (Development of Piezoelectric Energy Harvesting Device and Experiments)

  • 김기영;곽문규;강호용;김내수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.81-89
    • /
    • 2008
  • This paper is concerned with the development of the piezoelectric energy harvesting(PEH) device for ubiquitous sensor node(USN). The USN needs auxiliary power to lengthen its operational life. In this study, the piezoelectric energy harvesting system consisting of a cantilever with a tip mass and piezoelectric wafer was investigated in detail both theoretically and experimentally. The dynamic model for the addressed system was derived using the assumed mode method. The resulting equations of motion were expressed in matrix form, which had never been developed before. The power output characteristics of the PEH was then calculated and discussed. Various experiments were carried out to investigate the charging characteristics of electrical components. Theoretical and experimental results showed that the PEH was able to charge a battery with ambient vibrations but still needed an effective mechanism which can convert mechanical energy to electrical energy and an optimal electric circuit which dissipates small energy.

  • PDF