• Title/Summary/Keyword: Energy Function

Search Result 4,744, Processing Time 0.034 seconds

THE DECISION OF OPTIMUM BASIS FUNCTION IN IMAGE CLASSIFICATION BASED ON WAVELET TRANSFORM

  • Yoo, Hee-Young;Lee, Ki-Won;Jin, Hong-Sung;Kwon, Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.169-172
    • /
    • 2008
  • Land-use or land-cover classification of satellite images is one of the important tasks in remote sensing application and many researchers have been tried to enhance classification accuracy. Previous studies show that the classification technique based on wavelet transform is more effective than that of traditional techniques based on original pixel values, especially in complicated imagery. Various wavelets can be used in wavelet transform. Wavelets are used as basis functions in representing other functions, like sinusoidal function in Fourier analysis. In these days, some basis functions such as Haar, Daubechies, Coiflets and Symlets are mainly used in 2D image processing. Selecting adequate wavelet is very important because different results could be obtained according to the type of basis function in classification. However, it is not easy to choose the basis function which is effective to improve classification accuracy. In this study, we computed the wavelet coefficients of satellite image using 10 different basis functions, and then classified test image. After evaluating classification results, we tried to ascertain which basis function is the most effective for image classification. We also tried to see if the optimum basis function is decided by energy parameter before classifying the image using all basis function. The energy parameter of signal is the sum of the squares of wavelet coefficients. The energy parameter is calculated by sub-bands after the wavelet decomposition and the energy parameter of each sub-band can be a favorable feature of texture. The decision of optimum basis function using energy parameter in the wavelet based image classification is expected to be helpful for saving time and improving classification accuracy effectively.

  • PDF

Nutritional Role of Dietary Fiber-Recent Knowledge on Dietary fiber (식이섬유의 주요기능)

  • Tsuji, Keisuke
    • Journal of Food Hygiene and Safety
    • /
    • v.7 no.4
    • /
    • pp.173-176
    • /
    • 1992
  • Non-absorbable substances in foods, for instance dietary fiber had been previously known as a non-nutritive part of foods. Recently , such a category has been gradually changed to as one of nutrients, As a main reason, dietary fibers includes many poly-or oligo-saccharides, which as resistant to alimentary hydrolyzing enzyme, However, parts of them are fermented by intestinal micro-organism to produce short chain fatty acids and so on. They are absorbed and utilized by human being. Now, it may be naturally accepted that dietary fiber is a kind of nutrients. Dietary fiber exerts many useful functions on body. They are classified into three large function , physicochemical function, physiological function and biological function. The last function of dietary fiber will be presented in the symphosium. Dietary fiber has several kinds of nutritional properties. One is energy source. Short chain fatty acids(SCFA) are oxidized and produced energy in body. Dietary fiber has not high energy, but not zero kilocalories. Another one is to be a constitutional component of higher animals' tissue. Last but most important one is physiological functions of dietary fiber.

  • PDF

Low-energy interband transition effects on extended Drude model analysis of optical data of correlated electron system

  • Hwang, Jungseek
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.3
    • /
    • pp.6-12
    • /
    • 2019
  • Extended Drude model has been used to obtain information of correlations from measured optical spectra of strongly correlated electron systems. The optical self-energy can be defined by the extended Drude model formalism. One can extract the optical self-energy and the electron-boson spectral density function from measured reflectance spectra using a well-developed usual process, which is consistent with several steps including the extended Drude model and generalized Allen's formulas. Here we used a reverse process of the usual process to investigate the extended Drude analysis when an additional low-energy interband transition is included. We considered two typical electron-boson spectral density model functions for two different (normal and d-wave superconducting) material states. Our results show that the low-energy interband transition might give significant effects on the electron-boson spectral density function obtained using the usual process. However, we expect that the low-energy interband transition can be removed from measured spectra in a proper way if the transition is well-defined or well-known.

Implementation of Sound Source Location Detector (음원 위치 검출기의 구현)

  • 이종혁;김진천
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.5
    • /
    • pp.1017-1025
    • /
    • 2000
  • The human auditory system has been shown to posses remarkable abilities in the localization and tracking of sound sources. The localization is the result of processing two primary acoustics cues. These are the interaural time difference(ITD) cues and interaural intensity difference(IID) cues at the two ears. In this paper, we propose TEPILD(Time Energy Previous Integration Location Detector) model. TEPILD model is constructed with time function generator, energy function generator, previous location generator and azimuth detector. Time function generator is to process ITD and energy function generator is to process IID. Total average accuracy rate is 99.2%. These result are encouraging and show that proposed model can be applied to the sound source location detector.

  • PDF

A Measurements on the Characteristics of Electron Energy Distribution Function of Radio-Frequency Inductively Couples Plasma (고주파 유도결합 플라즈마의 전자에너지 분포함수 계측에 관한 연구)

  • 하장호;전용우;최상태;박원주;이광식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.82-86
    • /
    • 1999
  • Electron Energy Distribution Function(EEDF) were treasured In Radio-Frequency Inductively Coupled Plasma(RFlCP) using a probe rrethocl Measurerrents were conducted in argon discharge for pressure from 10[mTorr] to 4O[mTorr] and input rf power from 100[W] to 600[W] and flow rate from 3[sccm] to 12[sccm]. Spatial distribution of electron energy distribution function were measured for discharge with same aspoct ratio (R/L=2). Electron energy distribution function strongly depended on both pressure and power. Electron energy distribution function increased with increasing flow rate. Radial distribution of the electron energy distribution function were peaked in the plasma center. Normal distribution of the electron energy distribution function were peaked in the center between quartz plate and substrate. From the results, we can find out the generation mechanism of Radio Frequency Inductively Coupled Plasma. And these results contribute the application of a simple Inductively Coupled Plasma(ICP).a(ICP).

  • PDF

Analysis of Electron Swarm Diffusion Coefficients and Energy Distribution Function in $e^-$-$CF_4$ Scattering ($e^-$-$CF_4$산란중에서 전자군의 확산계수 및 에너지분포함수 연구)

  • 하성철;임상원
    • Electrical & Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.342-348
    • /
    • 1997
  • In this paper, the behavior of electron swarm parameters and energy distribution function of the discharge under high E/N condition in e$^{-10}$ -CF$_{4}$ gas have been analysed over the E/N range from 1-300(Td) by the MCS and BEq methods using set of electron collision cross section determined by the authors. The swarm parameters and energy distribution function have been calculated for the pulsed Townsend, steady-state Townsend and Time of Flight methods. The results gained that the value of electron swarm parameters such as the electron drift velocity, the electron ionization and attachment coefficients and longitudinal diffusion coefficients in agreement with the experimental and theoretical data for a range of E/N. The electron energy distribution function has been explained and analysed in e$^{-10}$ -CF$_{4}$ at E/N : 5, 10, 100, 200, 300(Td) for a case of the equilibrium region in the mean electron energy and respective set of electron collision cross sections. The validity of the results has been confirmed by TOF and SST methods.

  • PDF

A New Stabilizing Method for Transiently Unstable Systems by Using Transient Energy Function (에너지함수를 이용한 과도불안정 시스템의 안정화 방법)

  • Kim, Jung-Woo;Chun, Yeong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.567-575
    • /
    • 2008
  • Transient security assessment(TSA) is becoming an essential requirement not only for security monitoring but also for stabilizing control of power systems under new electricity environments. It has already been pointed out that fast transient stability study is an important part for monitoring and controlling system security. In this paper, we discuss an energy function method for stabilizing control of transiently unstable systems by introducing generator tripping system to enhance the transient stability of power systems. The stabilization with less tripped power can be obtained by tripping the generators faster than out-of-synchronism relay. Fast transient stability assessment based on the state estimation and direct transient energy function method is an important part of the stabilizing scheme. It is possible to stabilize the transiently unstable system by tripping less generators before the action of out-of-synchronism relay, especially when a group of generator are going to be out-of-synchronism. Moreover, the amount of generator output needed for tripping can be decided by Transient Energy Function(TEF) method. The main contribution of this paper is on the stabilizing scheme which can be running in the Wide Area Control System.

Computational modelling for description of rubber-like materials with permanent deformation under cyclic loading

  • Guo, Z.Q.;Sluys, L.J.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.3
    • /
    • pp.317-328
    • /
    • 2008
  • When carbon-filled rubber specimens are subjected to cyclic loading, they do not return to their initial state after loading and subsequent unloading, but exhibit a residual strain or permanent deformation. We propose a specific form of the pseudo-elastic energy function to represent cyclic loading for incompressible, isotropic materials with stress softening and residual strain. The essence of the pseudo-elasticity theory is that material behaviour in the primary loading path is described by a common elastic strain energy function, and in unloading, reloading or secondary unloading paths by a different strain energy function. The switch between strain energy functions is controlled by the incorporation of a damage variable into the strain energy function. An extra term is added to describe the permanent deformation. The finite element implementation of the proposed model is presented in this paper. All parameters in the proposed model and elastic law can be easily estimated based on experimental data. The numerical analyses show that the results are in good agreement with experimental data.

Integrated Stability Analysis for Power Systems Using Energy Function (에너지함수에 의한 통합안정도해석)

  • Moon, Young-Hyun;Lee, Eung-Hyuk;Lee, Yoon-Seop;Oh, Yong-Taeg;Kim, Baik
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.77-79
    • /
    • 1996
  • This paper presents an integrated stability analysis by the direct energy function method based on Equivalent Mechanical Model(EMM) which reflects the system behavior related to both angle and voltage stabilities. Actually, angle and voltage stability are intimately related in power system, so complete decoupling of these stability analysis is not possible in general, particularly in stressed power systems. In this paper, it is shown that a identical energy function can be used for angle and voltage stability analysis. The proposed energy function reflects the line resistances and reactive powers under the constraints of the same R/X ratio. The energy margin between UEP and SEP presents a good collapse proximity index in both types of stability analysis.

  • PDF