• 제목/요약/키워드: Energy Feedback

검색결과 413건 처리시간 0.024초

INHERENT SAFETY ANALYSIS OF THE KALIMER UNDER A LOFA WITH A REDUCED PRIMARY PUMP HALVING TIME

  • Chang, W.P.;Kwon, Y.M.;Jeong, H.Y.;Suk, S.D.;Lee, Y.B.
    • Nuclear Engineering and Technology
    • /
    • 제43권1호
    • /
    • pp.63-74
    • /
    • 2011
  • The 600 MWe, pool-type, sodium-cooled, metallic fuel loaded KALIMER-600 (Korea Advanced LiquId MEtal Reactor, 600 MWe) has been conceptually designed with an emphasis on safety by self-regulating (inherent/intrinsic) negative reactivity feedback in the core. Its inherent safety under the ATWS (Anticipated Transient Without Scram) events was demonstrated in an earlier study. Initiating events of an HCDA (Hypothetical Core Disruptive Accident), however, also need to be analyzed for assessment of the margins in the current design. In this study, a hypothetical triple-fault accident, ULOF (Unprotected Loss Of Flow) with a reduced pump halving time, is investigated as an initiator of a core disruptive accident. A ULOF with insufficient primary pump inertia may cause core sodium boiling due to a power-to-flow mismatch. If the positive sodium reactivity resulting from this boiling is not compensated for by other intrinsic negative reactivity feedbacks, the resulting core power burst would challenge the fuel integrity. The present study focuses on determination of the limit of the pump inertia for assuring inherent reactivity feedback and behavior of the core after sodium boiling as well. Transient analyses are performed with the safety analysis code SSC-K, which now incorporates a new sodium boiling model. The results show that a halving time of more than 6.0 s does not allow sodium boiling even with very conservative assumptions. Boiling takes place for a halving time of 1.8 s, and its behavior can be predicted reasonably by the SSC-K.

MPC-based Two-stage Rolling Power Dispatch Approach for Wind-integrated Power System

  • Zhai, Junyi;Zhou, Ming;Dong, Shengxiao;Li, Gengyin;Ren, Jianwen
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.648-658
    • /
    • 2018
  • Regarding the fact that wind power forecast accuracy is gradually improved as time is approaching, this paper proposes a two-stage rolling dispatch approach based on model predictive control (MPC), which contains an intra-day rolling optimal scheme and a real-time rolling base point tracing scheme. The scheduled output of the intra-day rolling scheme is set as the reference output, and the real-time rolling scheme is based on MPC which includes the leading rolling optimization and lagging feedback correction strategy. On the basis of the latest measured thermal unit output feedback, the closed-loop optimization is formed to correct the power deviation timely, making the unit output smoother, thus reducing the costs of power adjustment and promoting wind power accommodation. We adopt chance constraint to describe forecasts uncertainty. Then for reflecting the increasing prediction precision as well as the power dispatcher's rising expected satisfaction degree with reliable system operation, we set the confidence level of reserve constraints at different timescales as the incremental vector. The expectation of up/down reserve shortage is proposed to assess the adequacy of the upward/downward reserve. The studies executed on the modified IEEE RTS system demonstrate the effectiveness of the proposed approach.

System dynamics simulation of the thermal dynamic processes in nuclear power plants

  • El-Sefy, Mohamed;Ezzeldin, Mohamed;El-Dakhakhni, Wael;Wiebe, Lydell;Nagasaki, Shinya
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1540-1553
    • /
    • 2019
  • A nuclear power plant (NPP) is a highly complex system-of-systems as manifested through its internal systems interdependence. The negative impact of such interdependence was demonstrated through the 2011 Fukushima Daiichi nuclear disaster. As such, there is a critical need for new strategies to overcome the limitations of current risk assessment techniques (e.g. the use of static event and fault tree schemes), particularly through simulation of the nonlinear dynamic feedback mechanisms between the different NPP systems/components. As the first and key step towards developing an integrated NPP dynamic probabilistic risk assessment platform that can account for such feedback mechanisms, the current study adopts a system dynamics simulation approach to model the thermal dynamic processes in: the reactor core; the secondary coolant system; and the pressurized water reactor. The reactor core and secondary coolant system parameters used to develop system dynamics models are based on those of the Palo Verde Nuclear Generating Station. These three system dynamics models are subsequently validated, using results from published work, under different system perturbations including the change in reactivity, the steam valve coefficient, the primary coolant flow, and others. Moving forward, the developed system dynamics models can be integrated with other interacting processes within a NPP to form the basis of a dynamic system-level (systemic) risk assessment tool.

중앙난방시스템의 제어방법에 따른 난방성능 및 에너지소모량 특성 연구 (Heating Performance and Energy Consumption Characteristics with Control Strategies for Central Heating System)

  • 송재엽;양완연;안병천
    • 한국지열·수열에너지학회논문집
    • /
    • 제7권1호
    • /
    • pp.38-44
    • /
    • 2011
  • In this study, heating performance and energy consumption characteristics with control strategies for central heating system were researched by the simulation. The simulation analysis is made by TRNSYS ver. 15 with the actual data. The parametric study on proportional factor, control time interval and outdoor air temperatures changes were done to compare control characteristics and energy performance, respectively. As a result, the simulation results with various parameter changes show good heating performance and energy saving.

LESSONS LEARNED FROM HALDEN PROJECT RESEARCH ON HUMAN SYSTEM INTERFACES

  • Braseth, Alf Ove;Nihlwing, Christer;Svengren, Hakan;Veland, Oystein;Hurlen, Lars;Kvalem, Jon
    • Nuclear Engineering and Technology
    • /
    • 제41권3호
    • /
    • pp.215-224
    • /
    • 2009
  • Innovative Human System Interfaces (HSIs) has been a major topic of research of the international Halden Reactor Project (HRP) for many years. Different design concepts have been addressed and prototypes have been implemented and evaluated in the experimental control room facility of HRP. Many of the concepts go far beyond traditional P&ID type displays, and utilize advanced computer graphics and animations. The paper briefly describes some of the concepts, their advantages and disadvantages experienced through evaluations and feedback from users.

UAV Formation Wight Control Law Utilizing Energy Maneuverability

  • Choi, Jong-Ug;Kim, You-Dan;Moon, Gwan-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권1호
    • /
    • pp.31-41
    • /
    • 2008
  • This paper deals with the energy saving problem of the follower aircraft in the loose leader-follower formation geometry in which the lateral separation between formation members is more than a wingspan of the leader aircraft. This formation geometry offers no drag benefit, but has a strategic advantage. In the case of loose formation flight, the follower aircraft usually consumes more energy than the leader aircraft because the follower aircraft should use more thrust to maintain given formation geometry, especially during the turning phase from the outside of the leader"s flight path or join-up phase. A formation control scheme based on the energy maneuverability is proposed in this paper. To design the proposed control law, the velocity command is designed using feedback linearization for the horizontal formation geometry and then coverts it to the altitude command using the energy equation. Numerical simulation is performed to verify the effectiveness of the proposed controller.

공조 시스템의 센서 고장 검증 기술 (Sensor Validation for an Air Handling Unit)

  • 이원용;신동열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.612-614
    • /
    • 1999
  • In order to improve the operational reliability, it is necessary to validate the measured sensor data, isolate any failed sensor and recover the failed critical measurement. This paper describes the use of estimating equation to identify failed sensors and to recover the feedback signal for control purpose when the sensor measurement is determined to be erroneous Simulation results show that the proposed sensor validation scheme can adequately identify the failed sensor and provide reasonable estimates for control purposes.

  • PDF

웨이블릿 영역에서 부대역간 트리구조의 에너지 분포에 의한 디지털 워터마크 삽입 알고리즘 (Digital Watermark Algorithm Based on Energy Distribution of Subband Tree Structure in Wavelet Domain)

  • 서영호;최순영;박진영;김동욱
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.85-88
    • /
    • 2002
  • In this paper, the proposed watermark algorithm is based on energy distribution of the subband coefficients in the frequency domain and edge of the original image in the spacial domain. Out of these information, the KeyMap which decides the embedded position of watermark is produced. And then the binary watermark is embedded into the wavelet coefficient of LL3 subband using KeyMap and LFSR(Linear Feedback Shift Register).

  • PDF

프로파일 기반 원격제어 힘반영 설계 (Design of a Force-feedback based on Profile in Tele-operation)

  • 최유락;이재철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.1134-1135
    • /
    • 2014
  • 힘반영 원격제어시스템의 시간지연 문제로 발생하는 마스터제어기와 슬레이브 로봇 매니퓰레이터의 발산 운동에 대한 완화를 위하여, 원격작업에 필요한 시나리오를 통해 작업환경들을 프로파일로 제공하여 힘반영에 도움을 받는 방법에 대하여 기술한다. 이 방법은 원전과 같이 제한된 시간 내에 작업을 종료해야하는 환경에서 유용하게 사용될 수 있다.

Two-Parameter Optimization of CANDU Reactor Power Controller

  • Park, Jong-Woon-;Kim, Sung-Bae-
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1994년도 추계학술발표회 초록집
    • /
    • pp.146-149
    • /
    • 1994
  • A nonlinear dynamic optimization has been performed for reactor power control system of CANDU 6 nuclear power plant considering xenon, fuel and moderator temperature feedback effects. Integral-of-Time-multiplied Absolute-Error (ITAE) criterion has been used as a performance index of the system behavior. Optimum controller gain are found by searching algorithm of Sequential Quadratic Programming (SQP). System models are referenced from most recent literatures. Signal flow network construction and optimization have been done by using commercial computer software package.

  • PDF