• 제목/요약/키워드: Energy Equivalence Theory

검색결과 10건 처리시간 0.024초

PWR 소격격자 Nodal 계산에의 균질화 이론 적용 (An Application of Homogenization Theory to the Coarse-Mesh Nodal Calculation of PWRs)

  • Myung Hyun Kim;Jonghwa Chang;Kap Suk Moon;Chang Kun Lee
    • Nuclear Engineering and Technology
    • /
    • 제16권4호
    • /
    • pp.202-216
    • /
    • 1984
  • Nodal method가 소격격자 해석방법의 하나로 정립됨으로써, 계산격자가 비교적 크더라도 각 격자의 평균출력분포를 정확히 계산할 수 있게 하는 균질화변수틀 찾는 방법이 중요하게 되었다. 본 연구에서는 simplified equivalence theory와 approximate node equivalence theory의 두가지 근사방법을 가압경수형 원자로 문제에 적응하여 시험하여 보았다. 균질화계산과 노심분석계산 방법으로서 analytic nodal method에 기초를 둔 ANM 코드를 개발하였다. 여러 균질화 방법외 정확성을 KTDD 코드에 의한 reference solution과 비교하여 본 결과, 균질화 계산은 핵연료영역에서는 영역별 핵연료집합체 계산으로, baffle과 reflector의 공존 격자영역은 이들을 포함하는 color set 계산으로 수행할 수 있음을 알았다. Approximate node equivalence theory에 입각해서 approximate homogenized cross-section들과 approximate discontinuity factor들의 균질화 변수를 사용하면 출력분포와 임계도가 각각 0.8%, 0,1% 오차 범위내에서 예측되었다.

  • PDF

Energy equivalent lumped damage model for reinforced concrete structures

  • Neto, Renerio Pereira;Teles, Daniel V.C.;Vieira, Camila S.;Amorim, David L.N.F.
    • Structural Engineering and Mechanics
    • /
    • 제84권2호
    • /
    • pp.285-293
    • /
    • 2022
  • Lumped damage mechanics (LDM) is a recent nonlinear theory with several applications to civil engineering structures, such as reinforced concrete and steel buildings. LDM apply key concepts of classic fracture and damage mechanics on plastic hinges. Therefore, the lumped damage models are quite successful in reproduce actual structural behaviour using concepts well-known by engineers in practice, such as ultimate moment and first cracking moment of reinforced concrete elements. So far, lumped damage models are based in the strain energy equivalence hypothesis, which is one of the fictitious states where the intact material behaviour depends on a damage variable. However, there are other possibilities, such as the energy equivalence hypothesis. Such possibilities should be explored, in order to pursue unique advantages as well as extend the LDM framework. Therewith, a lumped damage model based on the energy equivalence hypothesis is proposed in this paper. The proposed model was idealised for reinforced concrete structures, where a damage variable accounts for concrete cracking and the plastic rotation represents reinforcement yielding. The obtained results show that the proposed model is quite accurate compared to experimental responses.

임의의 단면을 갖는 보의 전단중심 결정에 관한 연구 (A Study on Determination of Shear Center of Beam Having Arbitrary Cross Section)

  • 오택열;변창환;유용석;권영하
    • 한국정밀공학회지
    • /
    • 제19권1호
    • /
    • pp.93-98
    • /
    • 2002
  • It is important to determinate the shear center of beam having arbitrary cross-section in structures. In this study, we have introduced the determination of shear center that gets the equivalent stiffness matrix representing arbitrary cross section of beam and applies energy equivalence theory. This method shows the results of applying on examples that we know the exact and approximate solution of open and cross section of beam. This study also compares with the shear center of composite rotor blade got by the experiment and by the suggested method.

터널막장 선행보강 효과에 관한 이론적.수치해석적 연구 (A Theoretical and Numerical Study on the Effects of Prereinforcement of Tunnel Face)

  • 김광진;문현구
    • 터널과지하공간
    • /
    • 제11권4호
    • /
    • pp.328-338
    • /
    • 2001
  • Fiber Glass Tube(FGT) 또는 steel pipe를 이용한 터널막장의 수평보강공법 그리고 강관다단공법 등은 터널 굴착시 터널막장의 안정성이 확보되지 못할 경우에 흔히 사용된다. 그러나 이러한 공법이 사용된 터널의 역학적 거동은 아직 충분히 알려진 바가 없으며, 따라서 설계와 전산해석 과정에서 경험에 의존하는 경우가 많고 공법의 합리적인 적용이 어려운 실정이다. 본 연구에서는 복합체 역학을 이용한 보강공법의 전산해석 단순화 방법의 적용성을 검증하였고, 강화지반의 등가탄성계수는 평균장 이론과 변형률 에너지 이론을 사용하여 도출하였다. 다양한 보강패턴에 따른 터널막장의 거동에 관한 매개변수 연구를 수행하였다.

  • PDF

3D material model for nonlinear basic creep of concrete

  • Bockhold, Jorg
    • Computers and Concrete
    • /
    • 제4권2호
    • /
    • pp.101-117
    • /
    • 2007
  • A new model predicting the nonlinear basic creep behaviour of concrete structures subjected to high multi-axial stresses is proposed. It combines a model based on the thermodynamic framework of the elasto-plastic continuum damage theory for time-independent material behaviour and a rheological model describing phenomenologically the long-term delayed deformation. Strength increase due to ageing is regarded. The general 3D solution for the creep theory is derived from a rate-type form of the uniaxial formulation by the assumption of associated creep flow and a theorem of energy equivalence. The model is able to reproduce linear primary creep as well as secondary and tertiary creep stages under high compressive stresses. For concrete in tension a simple viscoelastic formulation is applied. The material law is then incorporated into a finite element solution procedure for analysis of reinforced concrete structures. Numerical examples of uniaxial creep tests and concrete members show excellent agreement with experimental results.

탄성변형에너지 등가원리 기반 연속체 손상모델에 대한 수치실험 (Numerical Experiment for a Strain Energy Equivalence Principle (SEEP)-based Continuum Damage Model)

  • 윤덕기;이우식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.31-34
    • /
    • 2006
  • 이 논문에서는 선관통형 균열을 포함하는 정사각형 평판과 선관통형 균열이 연속체 손상이론을 이용에서 구한 유효 직교 이방성 탄성 물성치의 등가 연속체 모델로 대체된 평판의 모드형상과 고유진동수를 비교하여 SEEP에 기반하여 Lee 등이 [5] 제안한 연속체 손상이론을 검증하였다.

  • PDF

POINTWISE CROSS-SECTION-BASED ON-THE-FLY RESONANCE INTERFERENCE TREATMENT WITH INTERMEDIATE RESONANCE APPROXIMATION

  • BACHA, MEER;JOO, HAN GYU
    • Nuclear Engineering and Technology
    • /
    • 제47권7호
    • /
    • pp.791-803
    • /
    • 2015
  • The effective cross sections (XSs) in the direct whole core calculation code nTRACER are evaluated by the equivalence theory-based resonance-integral-table method using the WIMS-based library as an alternative to the subgroup method. The background XSs, as well as the Dancoff correction factors, were evaluated by the enhanced neutron-current method. A method, with pointwise microscopic XSs on a union-lethargy grid, was used for the generation of resonance-interference factors (RIFs) for mixed resonant absorbers. This method was modified by the intermediate-resonance approximation by replacing the potential XSs for the non-absorbing moderator nuclides with the background XSs and neglecting the resonance-elastic scattering. The resonance-escape probability was implemented to incorporate the energy self-shielding effect in the spectrum. The XSs were improved using the proposed method as compared to the narrow resonance infinite massbased method. The RIFs were improved by 1% in $^{235}U$, 7% in $^{239}Pu$, and >2% in $^{240}Pu$. To account for thermal feedback, a new feature was incorporated with the interpolation of pre-generated RIFs at the multigroup level and the results compared with the conventional resonance-interference model. This method provided adequate results in terms of XSs and k-eff. The results were verified first by the comparison of RIFs with the exact RIFs, and then comparing the XSs with the McCARD calculations for the homogeneous configurations, with burned fuel containing a mixture of resonant nuclides at different burnups and temperatures. The RIFs and XSs for the mixture showed good agreement, which verified the accuracy of the RIF evaluation using the proposed method. The method was then verified by comparing the XSs for the virtual environment for reactor applicationbenchmark pin-cell problem, as well as the heterogeneous pin cell containing burned fuel with McCARD. The method works well for homogeneous, as well as heterogeneous configurations.

Testing of tuned liquid damper with screens and development of equivalent TMD model

  • Tait, M.J.;El Damatty, A.A.;Isyumov, N.
    • Wind and Structures
    • /
    • 제7권4호
    • /
    • pp.215-234
    • /
    • 2004
  • The tuned liquid damper (TLD) is increasingly being used as an economical and effective vibration absorber. It consists of a water tank having the fundamental sloshing fluid frequency tuned to the natural frequency of the structure. In order to perform efficiently, the TLD must possess a certain amount of inherent damping. This can be achieved by placing screens inside the tank. The current study experimentally investigates the behaviour of a TLD equipped with damping screens. A series of shake table tests are conducted in order to assess the effect of the screens on the free surface motion, the base shear forces and the amount of energy dissipated. The variation of these parameters with the level of excitation is also studied. Finally, an amplitude dependent equivalent tuned mass damper (TMD), representing the TLD, is determined based on the experimental results. The dynamic characteristics of this equivalent TMD, in terms of mass, stiffness and damping parameters are determined by energy equivalence. The above parameters are expressed in terms of the base excitation amplitude. The parameters are compared to those obtained using linear small amplitude wave theory. The validity of this nonlinear model is examined in the companion paper.

Seismic behavior of T-shaped steel reinforced high strength concrete short-limb shear walls under low cyclic reversed loading

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Su, Yisheng
    • Structural Engineering and Mechanics
    • /
    • 제57권4호
    • /
    • pp.681-701
    • /
    • 2016
  • This paper presents an experimental study of six steel reinforced high strength concrete T-shaped short-limb shear walls configured with T-shaped steel truss under low cyclic reversed loading. Considering different categories of ratios of wall limb height to thickness, shear/span ratios, axial compression ratios and stirrup reinforcement ratios were selected to investigate the seismic behavior (strength, stiffness, energy dissipation capacity, ductility and deformation characteristics) of all the specimens. Two different failure modes were observed during the tests, including the flexural-shear failure for specimens with large shear/span ratio and the shear-diagonal compressive failure for specimens with small shear/span ratio. On the basis of requirement of Chinese seismic code, the deformation performance for all the specimens could not meet the level of 'three' fortification goals. Recommendations for improving the structural deformation capacity of T-shaped steel reinforced high strength concrete short-limb shear wall were proposed. Based on the experimental observations, the mechanical analysis models for concrete cracking strength and shear strength were derived using the equivalence principle and superposition theory, respectively. As a result, the proposed method in this paper was verified by the test results, and the experimental results agreed well with the proposed model.

On the effect of porosity on the shear correction factors of functionally graded porous beams

  • Ben Abdallah Medjdoubi;Mohammed Sid Ahmed Houari;Mohamed Sadoun;Aicha Bessaim;Ahmed Amine Daikh;Mohamed-Ouejdi Belarbi;Abdelhak Khechai;Aman Garg;Mofareh Hassan Ghazwani
    • Coupled systems mechanics
    • /
    • 제12권3호
    • /
    • pp.199-220
    • /
    • 2023
  • This article presents a new analytical model to study the effect of porosity on the shear correction factors (SCFs) of functionally graded porous beams (FGPB). For this analysis, uneven and logarithmic-uneven porosity functions are adopted to be distributed through the thickness of the FGP beams. Critical to the application of this theory is a determination of the correction factor, which appears as a coefficient in the expression for the transverse shear stress resultant; to compensate for the assumption that the shear strain is uniform through the depth of the cross-section. Using the energy equivalence principle, a general expression is derived from the static SCFs in FGPB. The resulting expression is consistent with the variationally derived results of Reissner's analysis when the latter are reduced from the two-dimensional case (plate) to the one-dimensional one (beam). A convenient algebraic form of the solution is presented and new study cases are given to illustrate the applicability of the present formulation. Numerical results are presented to illustrate the effect of the porosity distribution on the (SCFs) for various FGPBs. Further, the law of changing the mechanical properties of FG beams without porosity and the SCFare numerically validated by comparison with some available results.